• Title/Summary/Keyword: 시스템 서포트

Search Result 131, Processing Time 0.026 seconds

The study on the object recognition using Fuzzy Classification system based on Support Vector (서포트 벡터 기반 퍼지 분류 시스템을 이용한 물체 인식)

  • Kim, Sung-Jin;Won, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.167-170
    • /
    • 2003
  • 본 논문에서는 패턴 인식의 전형적인 경우인 보이기 기반 물체 인식(Appearance based object recognition)을 수행하기 위하여, 일반적인 퍼지 분류 모델과, 서포트 벡터 머신을 하이브리드(hybrid) 하게 연결한 서포트 벡터 기반 퍼지 분류 시스템이라는 새로운 방법을 제안하고 이에 대하여 연구한다. 일반적인 분류(classification)문제의 경우 두 클래스로 구분하는데 최적의 성능을 가지고 있는 서포트 벡터 머신이 다중클래스(Multiclass)의 경우 발생 하는 계산량의 증가 문제를 해 결하기 위하여 다중 클래스 분류(Multiclass classification)에 장점을 가진 퍼지 분류 시스템을 도입, 서포트 벡터 머신에 연결함으로써 단점을 보완하는 시스템을 제안한다. 즉 서포트 벡터 머신을 통해 퍼지 시스템의 구조를 러닝(learning)하는데 사용하여 최종 적으로는 퍼지 분류 시스템(Fuzzy Classifier)이 나오도록 하는 것이다. 이 시스템의 성능을 확인하고자 여러 가지 물체들에 대한 이미지를 가지고 있는 COIL(Columbia Object Image Library) 데이터 베이스를 사용하여 보이기 기반 물체 인식(Appearance based Object Recognition)을 수행 하였으며 이를 순수한 서포트 벡터 머신만을 이용하여 물체 인식을 수행한 경우와 정확도 및 인식 시간에 대하여 비교하였다.

  • PDF

Real Time Face Training Method Using Support Vector Machine (서포트 벡터 머신을 이용한 실시간 얼굴 학습 방법)

  • 이일용;안정호;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.547-549
    • /
    • 2003
  • 근래 패턴인식 분야에 서포트벡터머신(Support Vector Machine)이 많이 사용되어지고 있다. 서포트벡터머신이 전통적인 패턴인식 방법론에 비해 우수한 성능을 보이고 있지만. 적은 클래스의 숫자, 문자 인식과는 달리 클래스의 수가 많고. 고정되어있지 않은 얼굴인식에서는 새로운 클래스가 등록될때마다 학습을 반복해야 한다. 그러나, 서포트벡터의 특성상 학습시의 계산의 복접성 때문에 실시간 학습은 사실상 불가능하다. 이에 이 논문에서는 서포트벡터머신을 이용한 실시간 얼굴인식 시스템에서의 빠른 학습방법을 제안했다. 이 시스템은 다중 클래스 인식방법 중 일대다(One Per Class)방법을 채택했으며. 캠브리지(Cambridge) ORL 얼굴 데이터를 임의적로 11개의 실험 데이터 셋으로 변형한 후 실험 및 평가해 본 결과 빠른 학습능력을 보임과 동시에 인식률에서도 별 차이가 없는 것을 확인할 수 있었다.

  • PDF

Parameter Tuning in Support Vector Regression for Large Scale Problems (대용량 자료에 대한 서포트 벡터 회귀에서 모수조절)

  • Ryu, Jee-Youl;Kwak, Minjung;Yoon, Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In support vector machine, the values of parameters included in kernels affect strongly generalization ability. It is often difficult to determine appropriate values of those parameters in advance. It has been observed through our studies that the burden for deciding the values of those parameters in support vector regression can be reduced by utilizing ensemble learning. However, the straightforward application of the method to large scale problems is too time consuming. In this paper, we propose a method in which the original data set is decomposed into a certain number of sub data set in order to reduce the burden for parameter tuning in support vector regression with large scale data sets and imbalanced data set, particularly.

Nu-SVR Learning with Predetermined Basis Functions Included (정해진 기저함수가 포함되는 Nu-SVR 학습방법)

  • Kim, Young-Il;Cho, Won-Hee;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.316-321
    • /
    • 2003
  • Recently, support vector learning attracts great interests in the areas of pattern classification, function approximation, and abnormality detection. It is well-known that among the various support vector learning methods, the so-called no-versions are particularly useful in cases that we need to control the total number of support vectors. In this paper, we consider the problem of function approximation utilizing both predetermined basis functions and a no-version support vector learning called $\nu-SVR$. After reviewing $\varepsilon-SVR$, $\nu-SVR$, and a semi-parametric approach, this paper presents an extension of the conventional $\nu-SVR$ method toward the direction that can utilize Predetermined basis functions. Moreover, the applicability of the presented method is illustrated via an example.

One-class Least Square Support Vector Machines (단일부류 최소제곱 서포트 벡터 머신)

  • 우상호;이성환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.559-561
    • /
    • 2002
  • 서포트 벡터 머신은 얼굴인식이나 문자인식과 같은 다양한 패턴인식 문제에서 좋은 성능을 보여준다. 그러나 이러한 문제는 Quadratic Programming(QP) 문제에 관하여 몇 가지 단점을 가지고 있다. 일반적으로 대용량의 QP 문제를 해결하기 위해 많은 계산비용이 요구되며, QP 기반 시스템을 효과적으로 구현하는 것이 쉽지 않은 문제이다. 또한 대규모 데이터의 처리 시에는 입출력을 맞추기 또한 쉽지 않은 단점이 있다. 본 논문에서는 위의 단점을 극복하기 위하여 단일부류 문제를 최소제곱 서포트 벡터 머신을 기반으로 하여 해결하였다. 제안한 방법은 QP 문제를 해결하는 과정이 없이 단일부류 문제를 표현하여 최소제곱 방법을 이용하는 알고리즘이다. 제안된 방법으로 쉽고, 계산 비용을 줄이는 결과를 얻었다. 또한 서포트 벡터 영역 표식자에 확장 적용하여 선형방정식으로 구현하여, 문제를 해결하였다. 제안된 방법의 효율성을 입증하기 위하여 패턴인식 분야 중에 얼굴 인증 방법과 바이오인포매틱스 분야 중에 전립선 암 분류 문제에 적용하였다. 우리의 실험결과는 적합한 성능과 좋은 Equal Error Rate(EER)를 보여준다. 제안된 방법은 알 수 없는 물체의 분류 방법의 효율성을 증대시켰고, 실시간 응용분야에 직접적으로 적용될 수 있을 것으로 기대 된다.

  • PDF

A suggestion of safety standards for equestrian sports helmet (승마용 안전모 신뢰성 확보를 위한 안전기준 정립)

  • Lee, Heun-Su;Sim, U-Jong;Jang, Tae-Yeon;Kim, Gwang-Su
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.11a
    • /
    • pp.539-546
    • /
    • 2013
  • 본 연구는 승마용 안전모의 신뢰성 확보를 위해 안전기준을 정립하기 위한 연구이다. 국내 외 레저 스포츠 안전모 관련 안전기준을 비교 분석하여 도출한 주요 시험평가방법을 현재 국내에 유통 중인 중저가 승마용 안전모를 대상으로 성능시험을 하였다. 충격흡수성 시험 시 1축과 3축 가속도 센서를 이용한 시험방법에 대해서 성능평가 데이터를 통해 1축 가속도 센서를 이용한 충격흡수성 시험으로 선정하였다. 유지시스템의 강도시험에서 헤드 폼 서포트 방식과 후크 서포트 방식으로 구분되던 것을 시료에 손상 없이 시험 가능한 헤드 폼 서포트 방식으로 결정하였다. 이와 같이 승마용 안전모의 안전기준을 정립하여 제품의 안전성 및 신뢰성을 확보하고 나아가 "품질경영 및 공산품 안전 관리법"에 규정함으로써 자국민의 안전을 확보하고 중국산 저가 제품에 대한 시장진입장벽을 구축하여 경쟁력 있는 안전모 시장을 구축하기를 기대한다.

  • PDF

An Intrusion Detection System Using Principle Component Analysis and Support Vector Machines (주성분 분석과 서포트 벡터 머신을 이용한 침입 탐지 시스템)

  • 정성윤;강병두;김상균
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.314-317
    • /
    • 2003
  • 기존의 침입탐지 시스템에서는 오용탐지모델이 널리 사용되고 있다. 이 모델은 낮은 오판율(False Alarm rates)을 가지고 있으나, 새로운 공격에 대해 전문가시스템(Expert Systems)에 의한 규칙추가를 필요로 한다. 그리고 그 규칙과 완전히 일치되는 시그너처만 공격으로 탐지하므로 변형된 공격을 탐지하지 못한다는 문제점을 가지고 있다 본 논문에서는 이러한 문제점을 보완하기 위해 주성분분석(Principle Component Analysis; 이하 PCA)과 서포트 벡터 머신(Support Vector Machines; 이하 SVM)을 이용한 침입탐지 시스템을 제안한다. 네트워크 상의 패킷은 PCA를 이용하여 결정된 주성분 공간에서 해석되고, 정상적인 흐름과 비정상적인 흐름에 대한 패킷이미지패턴으로 정규화 된다. 이러한 두 가지 클래스에 대한 SVM 분류기를 구현한다. 개발하는 침입탐지 시스템은 알려진 다양한 침입유형뿐만 아니라, 새로운 변종에 대해서도 분류기의 유연한 반응을 통하여 효과적으로 탐지할 수 있다.

  • PDF

The Study of Support Vector Machine-based HOG (Histogram of Oriented Gradients) Feature Vector for Recognition by Numerical Sign Language (숫자 수화 인식을 위한 서포트 벡터 머신 기반의 HOG(Histogram of Oriented Gradients) 특징 벡터 연구)

  • Lee, SeungHwan;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.271-272
    • /
    • 2019
  • 현재 4차 산업혁명으로 인해 많은 이들의 삶의 질이 이전보다 개선되었음에도 불구하고, 소외된 계층을 위한 개발은 타 분야에 비해서 더뎌지고 있는 실정이다. 현대의 청각 장애인과 언어 장애인들은 시각 언어인 수화를 이용하여 의사소통을 한다. 그러나 수화는 진입 장벽이 높기 때문에, 이를 사용하지 않는 사람들은 청각 장애인 및 언어 장애인과 의사소통을 하는데 어려움을 겪는다. 본 논문은 이러한 불편함을 줄이기 위해 서포트 벡터 머신(Support Vector Machine, SVM) 기반의 HOG(Histogram of Oriented Gradients) 특징 벡터를 이용하여 수화의 기본인 숫자를 분류할 수 있는 시스템을 구현하여 수화를 번역할 수 있는 가능성을 제안한다.

  • PDF