• 제목/요약/키워드: 시스템 관점

검색결과 3,233건 처리시간 0.878초

A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

  • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
    • Journal of Intelligence and Information Systems
    • /
    • 제24권3호
    • /
    • pp.67-88
    • /
    • 2018
  • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • 제23권4호
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.

The Role of Digital Knowledge Richness in Green Technology Adoption: A Digital Option Theory Perspective (그린기술 채택에의 디지털 지식풍부성의 역할: 디지털 옵션 이론 관점에서)

  • Yoo, Hosun;Lee, Namyeon;Kwon, Ohbyung
    • The Journal of Information Systems
    • /
    • 제24권2호
    • /
    • pp.23-52
    • /
    • 2015
  • Purpose This study aims to understand the role of digital knowledge in accepting the green technology. This study combined digital option theory with the second version of the Unified Theory of Acceptance and Use of Technology (UTAUT2). Contrary to other studies in which the UTAUT2 is used to explain IT adoption behavior, we look at the relationship between IT and the UTAUT2 from a new angle, incorporating an important aspect of IT, that is, digitized knowledge richness, as a determinant of the UTAUT2. Design/methodology/approach Grounded in the UTAUT2, a content analysis was conducted to investigate novel constructs dedicated to explaining green technology adoption. In this study, an amended version of the UTAUT2 specific to green technology is offered that better explains the green technology adoption behavior of consumers. Using the items identified by content analysis, we developed a questionnaire with 36 survey items. We measured all the items on a seven-point Likert-type scale. We randomly selected 402 survey respondents from a set of panel data. After a pilot study, we analyzed the main survey data by using PLS 2.0M3 and SPSS 20.0, and employed structural equation modeling to test the hypotheses. Findings The results suggest that the UTAUT2 was found to be extendable to technologies other than conventional IT. Social influence is more significant than conventional utilitarian and hedonic-based constructs such as those utilized in the UTAUT and UTAUT2 in explaining adoption behavior in the context of green technologies. The hypothesized connection between digitized knowledge richness and adoption intention was supported by the results of studies on the role of IT in formation of attitudes toward eco-friendly production. The results also indicate that digital knowledge can also encourage people to try green technology when they learn that their peers are already using the technology successfully.

Software Reliability Growth Modeling in the Testing Phase with an Outlier Stage (하나의 이상구간을 가지는 테스팅 단계에서의 소프트웨어 신뢰도 성장 모형화)

  • Park, Man-Gon;Jung, Eun-Yi
    • The Transactions of the Korea Information Processing Society
    • /
    • 제5권10호
    • /
    • pp.2575-2583
    • /
    • 1998
  • The productionof the highly relible softwae systems and theirs performance evaluation hae become important interests in the software industry. The software evaluation has been mainly carried out in ternns of both reliability and performance of software system. Software reliability is the probability that no software error occurs for a fixed time interval during software testing phase. These theoretical software reliability models are sometimes unsuitable for the practical testing phase in which a software error at a certain testing stage occurs by causes of the imperfect debugging, abnornal software correction, and so on. Such a certatin software testing stage needs to be considered as an outlying stage. And we can assume that the software reliability does not improve by means of muisance factor in this outlying testing stage. In this paper, we discuss Bavesian software reliability growth modeling and estimation procedure in the presence of an imidentitied outlying software testing stage by the modification of Jehnski Moranda. Also we derive the Bayes estimaters of the software reliability panmeters by the assumption of prior information under the squared error los function. In addition, we evaluate the proposed software reliability growth model with an unidentified outlying stage in an exchangeable model according to the values of nuisance paramether using the accuracy, bias, trend, noise metries as the quantilative evaluation criteria through the compater simulation.

  • PDF

A Study on Mechanical Errors in Cone Beam Computed Tomography(CBCT) System (콘빔 전산화단층촬영(CBCT) 시스템에서 기계적 오류에 관한 연구)

  • Lee, Yi-Seong;Yoo, Eun-Jeong;Kim, Seung-Keun;Choi, Kyoung-Sik;Lee, Jeong-Woo;Suh, Tae-Suk;Kim, Joeng-Koo
    • Journal of radiological science and technology
    • /
    • 제36권2호
    • /
    • pp.123-129
    • /
    • 2013
  • This study investigated the rate of setup variance by the rotating unbalance of gantry in image-guided radiation therapy. The equipments used linear accelerator(Elekta Synergy TM, UK) and a three-dimensional volume imaging mode(3D Volume View) in cone beam computed tomography(CBCT) system. 2D images obtained by rotating $360^{\circ}$and $180^{\circ}$ were reconstructed to 3D image. Catpan503 phantom and homogeneous phantom were used to measure the setup errors. Ball-bearing phantom was used to check the rotation axis of the CBCT. The volume image from CBCT using Catphan503 phantom and homogeneous phantom were analyzed and compared to images from conventional CT in the six dimensional view(X, Y, Z, Roll, Pitch, and Yaw). The variance ratio of setup error were difference in X 0.6 mm, Y 0.5 mm Z 0.5 mm when the gantry rotated $360^{\circ}$ in orthogonal coordinate. whereas rotated $180^{\circ}$, the error measured 0.9 mm, 0.2 mm, 0.3 mm in X, Y, Z respectively. In the rotating coordinates, the more increased the rotating unbalance, the more raised average ratio of setup errors. The resolution of CBCT images showed 2 level of difference in the table recommended. CBCT had a good agreement compared to each recommended values which is the mechanical safety, geometry accuracy and image quality. The rotating unbalance of gentry vary hardly in orthogonal coordinate. However, in rotating coordinate of gantry exceeded the ${\pm}1^{\circ}$ of recommended value. Therefore, when we do sophisticated radiation therapy six dimensional correction is needed.

The effect of Big-data investment on the Market value of Firm (기업의 빅데이터 투자가 기업가치에 미치는 영향 연구)

  • Kwon, Young jin;Jung, Woo-Jin
    • Journal of Intelligence and Information Systems
    • /
    • 제25권2호
    • /
    • pp.99-122
    • /
    • 2019
  • According to the recent IDC (International Data Corporation) report, as from 2025, the total volume of data is estimated to reach ten times higher than that of 2016, corresponding to 163 zettabytes. then the main body of generating information is moving more toward corporations than consumers. So-called "the wave of Big-data" is arriving, and the following aftermath affects entire industries and firms, respectively and collectively. Therefore, effective management of vast amounts of data is more important than ever in terms of the firm. However, there have been no previous studies that measure the effects of big data investment, even though there are number of previous studies that quantitatively the effects of IT investment. Therefore, we quantitatively analyze the Big-data investment effects, which assists firm's investment decision making. This study applied the Event Study Methodology, which is based on the efficient market hypothesis as the theoretical basis, to measure the effect of the big data investment of firms on the response of market investors. In addition, five sub-variables were set to analyze this effect in more depth: the contents are firm size classification, industry classification (finance and ICT), investment completion classification, and vendor existence classification. To measure the impact of Big data investment announcements, Data from 91 announcements from 2010 to 2017 were used as data, and the effect of investment was more empirically observed by observing changes in corporate value immediately after the disclosure. This study collected data on Big Data Investment related to Naver 's' News' category, the largest portal site in Korea. In addition, when selecting the target companies, we extracted the disclosures of listed companies in the KOSPI and KOSDAQ market. During the collection process, the search keywords were searched through the keywords 'Big data construction', 'Big data introduction', 'Big data investment', 'Big data order', and 'Big data development'. The results of the empirically proved analysis are as follows. First, we found that the market value of 91 publicly listed firms, who announced Big-data investment, increased by 0.92%. In particular, we can see that the market value of finance firms, non-ICT firms, small-cap firms are significantly increased. This result can be interpreted as the market investors perceive positively the big data investment of the enterprise, allowing market investors to better understand the company's big data investment. Second, statistical demonstration that the market value of financial firms and non - ICT firms increases after Big data investment announcement is proved statistically. Third, this study measured the effect of big data investment by dividing by company size and classified it into the top 30% and the bottom 30% of company size standard (market capitalization) without measuring the median value. To maximize the difference. The analysis showed that the investment effect of small sample companies was greater, and the difference between the two groups was also clear. Fourth, one of the most significant features of this study is that the Big Data Investment announcements are classified and structured according to vendor status. We have shown that the investment effect of a group with vendor involvement (with or without a vendor) is very large, indicating that market investors are very positive about the involvement of big data specialist vendors. Lastly but not least, it is also interesting that market investors are evaluating investment more positively at the time of the Big data Investment announcement, which is scheduled to be built rather than completed. Applying this to the industry, it would be effective for a company to make a disclosure when it decided to invest in big data in terms of increasing the market value. Our study has an academic implication, as prior research looked for the impact of Big-data investment has been nonexistent. This study also has a practical implication in that it can be a practical reference material for business decision makers considering big data investment.

An Exploration of MIS Quarterly Research Trends: Applying Topic Modeling and Keyword Network Analysis (MIS Quarterly 연구동향 탐색: 토픽모델링 및 키워드 네트워크 분석 활용)

  • Kang, Eunkyung;Jung, Yeonsik;Yang, Seonuk;Kwon, Jiyoon;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • 제28권2호
    • /
    • pp.207-235
    • /
    • 2022
  • In a knowledge-based society where knowledge and information industries are the main pillars of the economy, knowledge sharing and diffusion and its systematic management are recognized as essential strategies for improving national competitiveness and sustainable social development. In the field of Information Systems (IS) research, where the convergence of information technology and management takes place in various ways, the evolution of knowledge occurs only when researchers cooperate in turning old knowledge into new knowledge from the perspective of the scientific knowledge network. In particular, it is possible to derive new insights by identifying topics of interest in the relevant research field, applied methodologies, and research trends through network-based interdisciplinary graftings such as citations, co-authorships, and keywords. In previous studies, various attempts have been made to understand the structure of the knowledge system and the research trends of the relevant community by revealing the relationship between research topics, methodologies, and co-authors. However, most studies have compared two or more journals and been limited to a certain period; hence, there is a lack of research that looked at research trends covering the entire history of IS research. Therefore, this study was conducted in the following order for all the papers (from its first issue in 1977 to the first quarter of 2022) published in the MIS Quarterly (MISQ) Journal, which plays a leading role in revealing knowledge in the IS research field: (1) After extracting keywords, (2) classifying the extracted keywords into research topics, methodologies, and theories, and (3) using topic modeling and keyword network analysis in order to identify the changes from the beginning to the present of the IS research in a chronological manner. Through this study, it is expected that by examining the changes in IS research published in MISQ, the developing patterns of IS research can be revealed, and a new research direction can be presented to IS researchers, nurturing the sustainability of future research.

Beyond Platforms to Ecosystems: Research on the Metaverse Industry Ecosystem Utilizing Information Ecology Theory (플랫폼을 넘어 생태계로: Information Ecology Theory를 활용한 메타버스 산업 생태계연구 )

  • Seokyoung Shin;Jaiyeol Son
    • Information Systems Review
    • /
    • 제25권4호
    • /
    • pp.131-159
    • /
    • 2023
  • Recently, amidst the backdrop of the COVID-19 pandemic shifting towards an endemic phase, there has been a rise in discussions and debates about the future of the metaverse. Simultaneously, major metaverse platforms like Roblox have been launching services integrated with generative AI, and Apple's mixed reality hardware, Vision Pro, has been announced, creating new expectations for the metaverse. In this situation where the outlook for the metaverse is divided, it is crucial to diagnose the metaverse from an ecosystem perspective, examine its key ecological features, driving forces for development, and future possibilities for advancement. This study utilized Wang's (2021) Information Ecology Theory (IET) framework, which is representative of ecosystem research in the field of Information Systems (IS), to derive the Metaverse Industrial Ecosystem (MIE). The analysis revealed that the MIE consists of four main domains: Tech Landscape, Category Ecosystem, Metaverse Platform, and Product/Service Ecosystem. It was found that the MIE exhibits characteristics such as digital connectivity, the integration of real and virtual worlds, value creation capabilities, and value sharing (Web 3.0). Furthermore, the interactions among the domains within the MIE and the four characteristics of the ecosystem were identified as driving forces for the development of the MIE at an ecosystem level. Additionally, the development of the MIE at an ecosystem level was categorized into three distinct stages: Narrow Ecosystem, Expanded Ecosystem, and Everywhere Ecosystem. It is anticipated that future advancements in related technologies and industries, such as robotics, AI, and 6G, will promote the transition from the current Expanded Ecosystem level of the MIE to an Everywhere Ecosystem level, where the connection between the real and virtual worlds is pervasive. This study provides several implications. Firstly, it offers a foundational theory and analytical framework for ecosystem research, addressing a gap in previous metaverse studies. It also presents various research topics within the metaverse domain. Additionally, it establishes an academic foundation that integrates concept definition research and impact studies, which are key areas in metaverse research. Lastly, referring to the developmental stages and conditions proposed in this study, businesses and governments can explore future metaverse markets and related technologies. They can also consider diverse metaverse business strategies. These implications are expected to guide the exploration of the emerging metaverse market and facilitate the evaluation of various metaverse business strategies.

A Look at the Physics Concept Hierarchy of Pre-service Physics Teacher Through the Knowledge State Analysis Method (지식상태 분석법을 통한 예비 물리교사들의 학년별 물리개념 위계도 분석)

  • Park, Sang-Tae;Byun, Du-Won;Lee, Hee-Bok;Kim, Jun-Tae;Yuk, Keun-Cheol
    • Journal of The Korean Association For Science Education
    • /
    • 제25권7호
    • /
    • pp.746-753
    • /
    • 2005
  • In order to be efficient teachers should understand the current level of leaners through diagnostic evaluation. However, it is arduous to administer a diagnostic examination in every class because of various limitations. This study examined, the major issues arising from the development of a new science diagnostic evaluation system by incorporating the using knowledge state analysis method. The proposed evaluation system was based on the knowledge state analysis method. Knowledge state analysis is a method where by a distinguished collection of knowledge uses the theory of knowledge space. The theory of knowledge space is very advantageous when analyzing knowledge in strong hierarchies like mathematics and science. It helps teaching plan through methodically analyzing a hierarchy viewpoint for students' knowledge structure. The theory can also enhance objective validity as well as support a considerable amount of data fast by using the computer. In addition, student understanding is improved through individualistic feedback. In this study, an evaluation instrument was developed that measured student learning outcome, which is unattainable from the existing method. The instrument was administered to pre-service physics teachers, and the results of student evaluation was analyzed using the theory of knowledge space. Following this, a revised diagnostic evaluation system for facilitating student individualized learning was constructed.

A Study of a User's Continuous Usage Behavior in a Mobile Data Service Platform: The Roles of Perceived Fee and Perceived Anxiety (모바일 데이터 서비스 플랫폼에서 지속사용 행동에 관한 연구: 재무적 비용과 정신적 비용의 역할 관점에서)

  • Kim, Byoung-Soo;Lee, Jong-Won;Kang, Young-Sik
    • Information Systems Review
    • /
    • 제12권1호
    • /
    • pp.209-227
    • /
    • 2010
  • One type of innovative multimedia platform environments is mobile data services (MDS), exemplified by Nate, Show, and OZ. In the context of MDS, enhancing user's continuance intention is a significant challenge to the continuing growth and long-term viability of MDS. Because the cost of using MDS is borne mainly by users, they are likely to evaluate it based on perceptions of what is received and what is given. This study identifies perceived usefulness and perceived enjoyment as the 'get'components, and perceived fee and perceived anxiety as the 'give' components. To understand the role of get and give components in the MDS post-adoption environment, this study incorporates these components into expectation confirmation model. We collected data from 204 users who had direct experiences with MDS within recent 3 months. The data was analyzed by employing PLS (partial least squares). Theoretical and practical implications of our findings are discussed.