• Title/Summary/Keyword: 시스템형상

Search Result 2,461, Processing Time 0.036 seconds

Effect of Control Method and Plunger Profile of Variable Valve on Flow Control of a Liquid Rocket Engine (액체로켓엔진의 유량조절에 가변밸브의 조절기법과 플런저 형상이 미치는 영향)

  • Lee, Joong-Youp;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.35-47
    • /
    • 2011
  • Dynamic characteristics of a flow control valve, which plays an important role in thrust and O/F control of liquid rocket engines, have been analyzed by the AMESim simulator modeling. The speed control method was proposed for the control of the flow valve equipped with a BLDC motor. The experimental results demonstrated the feasibility of systematical application as well as the performance of the speed control method. Moreover, the speed control method for BLDC motor is much simpler than the P control method in complex flow systems. With the speed control method, the control flow characteristics were evaluated according to plunger shapes. Consequently, same plunger shape proved to be more efficient in the mixture ratio control operated by two flow valves. It was also shown that the appropriate modification of plunger shapes could reduce the mixture ratio perturbation by 0.5%.

Development of Quality Analysis Method and System for SOFC (SOFC용 셀의 품질관리 기법개발)

  • Lee, InSung;Park, YoungMin;Kim, DoHyeong;Jun, JoongHwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.81.1-81.1
    • /
    • 2010
  • SOFC 발전시스템의 상용화를 위해 선행되어야 할 것은 스택의 안정적 출력 및 신뢰성 확보이다. 이를 이루기 위해서는 스택을 구성하는 구성요소의 신뢰성 있는 규격 및 검수가 필요하다. 즉, 셀, 밀봉재, 분리판 및 집전체로 대변되는 구성요소들이 스택에 장착되었을 때 그 기능을 최대한 발휘하면서도 점진적 또는 급격한 품질저하가 발생되지 말아야 한다. 특히, 셀의 경우 스택의 성능에 직접적인 영향을 미치는 구성요소로서 품질에 대한 명확한 검수기준이 필요하다. SOFC용 셀은 다공성 anode, 치밀한 전해질, 그리고 다공성 cathode로 구성된 세라믹 소결체이다. 이 때 치밀한 전해질에 결함이 내재되어 있거나 물리적 힘에 의해 신규로 발생할 경우, 연료로 사용되는 수소와 공기가 만나는 cross-over가 발생하게 된다. Cross-over는 연료가 소모되는 문제도 있지만 발열로 인한 Hot spot을 형성시켜서 주변과의 온도구배를 유발하고, 이로 인해 고체 전해질의 균열전파를 일으킬 수 있고 나아가 급격한 셀의 파괴를 야기할 수 있다. 본 연구에서는 SOFC에 사용되는 셀의 형상측정, 물리적 강도 및 결함 검출을 위한 검수기법을 개발하여 스택의 신뢰성 향상과 향후 규격표준화를 위한 기반을 제공하고자, 평판형 셀의 3차원 형상을 정밀하게 측정하는 장치와 일정 면압을 인가하여 특정 형상을 갖고 있는 셀의 물리적 파괴여부를 판단할 수 있는 장치, 그리고 셀의 전해질에 내재된 결함을 검출할 수 있는 장치를 제작하였다. 본 장치들은 $1,000cm^2$급 평판형 셀까지 검수할 수 있도록 고안하여 양산시스템에 접목시킬 수 있도록 고안된 것이다. 본 장치들을 이용한 검수결과, 현재 $700cm^2$급 평판형 셀의 경우 최대 camber가 4mm 이하, 전해질의 He leak rate는 $5{\times}10^{-5}mbar.l/s.cm^2$ 이하라는 검수규격을 본 연구소에서 운전하는 스택에 1차적으로 적용하였으며 현재 검수규격의 신뢰성 및 강화를 위한 연구를 수행 중에 있다.

  • PDF

Horse Hoof Shaped Object Detection in Satellite Images (위성영상에서 말발굽 형상을 갖는 관심물체 탐색 방법)

  • Lim, In-Geun;Ra, Sung-Woong
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1019-1027
    • /
    • 2017
  • As high resolution satellite images can be used, numerous studies have been carried out for exploiting these images in various fields. This paper proposes horse hoof shaped object detection method based on mathematical morphology to extract interesting targets. Interesting targets have conceptually similar shapes such as a horse hoof, not having exact size or shape. Detection of an object with the similar shapes is possible by applying mathematical morphology processes. The proposed method allows an automatic object detection system to detect the meaningful object in a large satellite image rapidly. The mathematical morphology process can be applied to binary images, and thus this method is very simple. Therefore, this method can easily extract a "horse hoof shaped object" from any image that has indistinct edges of the interesting object and different image qualities depending on the filming location, filming time, and filming environment. Using the proposed method by which a "horse hoof shaped object" can be rapidly extracted, the performance of the automatic object detection system can be improved.

A Study of Aerodynamic Design of a Radial Turbine for BOP of MCFC Fuel Cell System (연료전지 BOP용 구심터빈 공력설계에 관한 연구)

  • Choi, Bum-Seog;Ahn, Kook-Young;Park, Moo-Ryong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.531-534
    • /
    • 2006
  • This study is concerned with radial turbine design and performance improvement of a turbo generator system, which is used for maximizing performance of a 250kW MCFC fuel cell system. A preliminary design of a radial turbine has been performed under the thermodynamic and fluid-dynamic conditions determined by a cycle analysis of the MCFC BOP system. Basic demensions are determined by a meanline analysis and calculation of radial variation at the exit of the turbine. The turbine impeller is designed and modified by iterative processes of three dimensional flow analysis.

  • PDF

Numerical Analysis of Flow Rate Distribution of Diffusers with Various Shapes (다양한 디퓨저 형상의 유량 분배 특성에 관한 수치해석 연구)

  • Kim, Myoung Soo;Kim, Hoo Bae;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.789-795
    • /
    • 2014
  • In this study, the distribution characteristics of diffusers with various shapes that are installed in an open-type thermal storage system are numerically investigated. Four diffusers are designed to distribute a working fluid evenly through the holes on bifurcated pipes. Three-dimensional steady simulations of incompressible laminar flow are conducted using commercial software (ANSYS-FLUENT). The simulation results show that both the bidirectional header-type diffuser and the H-type diffuser distribute the working fluid evenly whereas both the unidirectional and the bidirectional diffusers distribute the working fluid unevenly. The results also show that the H-type diffuser requires a higher head of pump than the bidirectional header-type diffuser. Therefore, the bidirectional header-type diffuser is recommended for use because it enables even distribution of the working fluid and requires a low head of pump.

Conceptual Design of KSLV-II Launch Complex Flame Deflector (한국형발사체 발사대시스템 화염유도로 개념 설계 (I))

  • Oh, Hwayoung;Kang, Sunil;Kim, Daerae;Lee, Jungil;Um, Hyungsik;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.75-81
    • /
    • 2014
  • The flame deflector should be constructed to minimize the induced environmental effects on the launch vehicle and to minimize the exhaust impingement effects on the launch complex structures during the lift-off operation. Therefore, it should be designed to avoid recirculation and reverse flow of rocket exhaust plumes. The circumstance around launch complex and characteristics of launch vehicle should be taken into consideration for the flame deflector design. In this paper, we designed the flame deflector reflecting KSLV-II 1st engine characteristics and analyzed the effect of exhaust plumes related to change geometry by means of computational flow analysis.

Effects of Permanent Magnet Configuration on the Performance of the BLDC Motor in a Satellite Actuator (위성 구동기용 BLDC Motor 자석 형태 및 배치에 따른 성능)

  • Lee, Jung-Hyung;Lee, Jun Yong;Lee, Hun Jo;Oh, Hwa-Suk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2018
  • The torque ripple that is generated by the irregularity of magnetic flux density on the BLDC motor in a satellite actuator degrades the satellite attitude control performance. In this paper, the performance analysis of permanent magnet configurations (shape, arrangement, and air gap) is simulated by the Finite Element Method (FEM) to find the appropriate combination of the configuration. The configuration is chosen by comparing between rectangular and arc-shaped permanent magnets and single-arrangement and dual-arrangement magnets. The performance is verified by a prototype.

Virtual Flight Test for Conceptual Lunar Lander Demonstrator (달 착륙선 개념설계형상 검증모델 가상비행시험)

  • Lee, Won-Beom;Rew, Dong-Young
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.87-93
    • /
    • 2013
  • The conceptual design lunar lander demonstrator has been developed to use as a test bed for advanced spacecraft technologies and to test a prototype planetary lander capable of vertical takeoff and landing. Size of the lunar lander demonstrator is the same as that of lunar lander conceptually designed, however, the weight of lunar lander demonstrator is designed in 1/6 scale in consideration of gravity difference between moon and earth. The thruster clustering and virtual flight test were performed in the demonstrator fixed on the ground. The demonstrator ground test has been conducted for two months in the test site for the solid motor combustion of the Goheung Flight Center. The purposes of ground test of demonstrator are to demonstrate and verify essential electronics, propulsion system, control algorithm, embedded software, structure and system operation technologies before developing the flight model lander. This paper is described about the virtual flight test including test configuration, test aims and test facilities

An External Shape Optimization Study to Maximize the Range of a Guided Missile in Atmospheric Flight (대기권을 비행하는 유도 미사일의 최대 사거리 구현을 위한 외형 형상 최적화 시스템 연구)

  • Yang, Young-Rok;Hu, Sang-Bum;Je, So-Yeong;Park, Chan-Woo;Myong, Rho-Shin;Cho, Tae-Hwan;Hwang, Ui-Chang;Je, Sang-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.519-526
    • /
    • 2009
  • This paper describes a research result of a external shape optimization study to maximize the range of the guided missile with canards and tailfins in atmospheric flight. For this purpose, the external shape optimization program which can enhance the range of a missile was developed, incorporated with the trajectory analysis and the optimization technique. In the trajectory analysis part, Missile DATCOM which utilizes the semi-empirical method was directly connected to the trajectory code to supply the aerodynamic coefficients efficiently at every time step. In the gliding flight trajectory after apogee, a maximum $C_L/C_D$ trim condition calculation module was attached under the assumption of the missile continuously flying at maximum $C_L/C_D$ condition. In the optimization part, a Response Surface Method(RSM) was adopted to reduce the computing time.

Numerical Study on the Super Sonic Phenomenon of Compressed Air according to the Flow Path Conditions (유로조건에 따른 압축공기 초음속 유동 현상의 해석 연구)

  • Kim, Seung Mo;Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.470-476
    • /
    • 2019
  • The braking force for a train is generally provided by compressed air. The pressure valve system that is used to apply appropriate braking forces to trains has a complex flow circuit. It is possible to make a channel shape that can increase the flow efficiency by 3D printing. There are restrictions on the flow shape design when using general machining. Therefore, in this study, the compressed air flow was analyzed in a pressure valve system by comparing flow paths made with conventional manufacturing methods and 3D printing. An analysis was done to examine the curvature magnitude of the flow path, the diameter of the flow path, the magnitude of the inlet and reservoir pressure, and the initial temperature of the compressed air when the flow direction changes. The minimization of pressure loss and the uniformity of the flow characteristics influenced the braking efficiency. The curvilinear flow path made through 3D printing was advantageous for improving the braking efficiency compared to the rectangular shape manufactured by general machining.