• Title/Summary/Keyword: 시스템단계

Search Result 7,724, Processing Time 0.04 seconds

Development and application of prediction model of hyperlipidemia using SVM and meta-learning algorithm (SVM과 meta-learning algorithm을 이용한 고지혈증 유병 예측모형 개발과 활용)

  • Lee, Seulki;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.111-124
    • /
    • 2018
  • This study aims to develop a classification model for predicting the occurrence of hyperlipidemia, one of the chronic diseases. Prior studies applying data mining techniques for predicting disease can be classified into a model design study for predicting cardiovascular disease and a study comparing disease prediction research results. In the case of foreign literatures, studies predicting cardiovascular disease were predominant in predicting disease using data mining techniques. Although domestic studies were not much different from those of foreign countries, studies focusing on hypertension and diabetes were mainly conducted. Since hypertension and diabetes as well as chronic diseases, hyperlipidemia, are also of high importance, this study selected hyperlipidemia as the disease to be analyzed. We also developed a model for predicting hyperlipidemia using SVM and meta learning algorithms, which are already known to have excellent predictive power. In order to achieve the purpose of this study, we used data set from Korea Health Panel 2012. The Korean Health Panel produces basic data on the level of health expenditure, health level and health behavior, and has conducted an annual survey since 2008. In this study, 1,088 patients with hyperlipidemia were randomly selected from the hospitalized, outpatient, emergency, and chronic disease data of the Korean Health Panel in 2012, and 1,088 nonpatients were also randomly extracted. A total of 2,176 people were selected for the study. Three methods were used to select input variables for predicting hyperlipidemia. First, stepwise method was performed using logistic regression. Among the 17 variables, the categorical variables(except for length of smoking) are expressed as dummy variables, which are assumed to be separate variables on the basis of the reference group, and these variables were analyzed. Six variables (age, BMI, education level, marital status, smoking status, gender) excluding income level and smoking period were selected based on significance level 0.1. Second, C4.5 as a decision tree algorithm is used. The significant input variables were age, smoking status, and education level. Finally, C4.5 as a decision tree algorithm is used. In SVM, the input variables selected by genetic algorithms consisted of 6 variables such as age, marital status, education level, economic activity, smoking period, and physical activity status, and the input variables selected by genetic algorithms in artificial neural network consist of 3 variables such as age, marital status, and education level. Based on the selected parameters, we compared SVM, meta learning algorithm and other prediction models for hyperlipidemia patients, and compared the classification performances using TP rate and precision. The main results of the analysis are as follows. First, the accuracy of the SVM was 88.4% and the accuracy of the artificial neural network was 86.7%. Second, the accuracy of classification models using the selected input variables through stepwise method was slightly higher than that of classification models using the whole variables. Third, the precision of artificial neural network was higher than that of SVM when only three variables as input variables were selected by decision trees. As a result of classification models based on the input variables selected through the genetic algorithm, classification accuracy of SVM was 88.5% and that of artificial neural network was 87.9%. Finally, this study indicated that stacking as the meta learning algorithm proposed in this study, has the best performance when it uses the predicted outputs of SVM and MLP as input variables of SVM, which is a meta classifier. The purpose of this study was to predict hyperlipidemia, one of the representative chronic diseases. To do this, we used SVM and meta-learning algorithms, which is known to have high accuracy. As a result, the accuracy of classification of hyperlipidemia in the stacking as a meta learner was higher than other meta-learning algorithms. However, the predictive performance of the meta-learning algorithm proposed in this study is the same as that of SVM with the best performance (88.6%) among the single models. The limitations of this study are as follows. First, various variable selection methods were tried, but most variables used in the study were categorical dummy variables. In the case with a large number of categorical variables, the results may be different if continuous variables are used because the model can be better suited to categorical variables such as decision trees than general models such as neural networks. Despite these limitations, this study has significance in predicting hyperlipidemia with hybrid models such as met learning algorithms which have not been studied previously. It can be said that the result of improving the model accuracy by applying various variable selection techniques is meaningful. In addition, it is expected that our proposed model will be effective for the prevention and management of hyperlipidemia.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

The Present State of Domestic Acceptance of Various International Conventions for the Prevention of Marine Pollution (해양오염방지를 위한 각종 국제협약의 국내 수용 현황)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.293-300
    • /
    • 2006
  • Domestic laws such as Korea Marine Pollution Prevention Law (KMPPL) which has been mae and amended according to the conclusions and amendments of various international conventions for the prevention a marine pollution such as MARPOL 73/78 were reviewed and compared with the major contents of the relevant international conventions. Alternative measures for legislating new laws or amending existing laws such as KMPPL for the acceptance of major contents of existing international conventions were proposed. Annex VI of MARPOL 73/78 into which the regulations for the prevention of air pollution from ship have been adopted has been recently accepted in KMPPL which should be applied to ships which are the moving sources of air pollution at sea rather tlnn in Korea Air Environment Conservation Law which should be applied to automobiles and industrial installations in land. The major contents of LC 72/95 have been accepted in KMPPL However, a few of substances requiring special care in Annex II of 72LC, a few of items in characteristics and composition for the matter in relation to criteria governing the issue of permits for the dumping of matter at sea in Annex III of 72LC, and a few of items in wastes or other matter that may be considered for dumping in Annex I of 96 Protocol have not been accepted in KMPPL yet. The major contents of OPRC 90 have been accepted in KMPPL. However, oil pollution emergency plans for sea ports and oil handling facilities, and national contingency plan for preparedness and response have not been accepted in KMPPL yet. The waste oil related articles if Basel Convention, which shall regulate and prohibit transboundary movement of hazardous waste, should be accepted in KMPPL in order to prevent the transfer if scrap-purpose tanker ships containing oil/water mixtures and chemicals remained on beard from advanced countries to developing and/or underdeveloped countries. International Convention for the Control if Harmful Anti-Fouling Systems on the Ships should be accepted in KMPPL rather tlnn in Korea Noxious Chemicals Management Law. International Convention for Ship's Ballast Water/Sediment Management should be accepted in KMPPL or by a new law in order to prevent domestic marine ecosystem and costal environment from the invasion of harmful exotic species through the discharge of ship's ballast water.

  • PDF

A Study on the Differences of Information Diffusion Based on the Type of Media and Information (매체와 정보유형에 따른 정보확산 차이에 대한 연구)

  • Lee, Sang-Gun;Kim, Jin-Hwa;Baek, Heon;Lee, Eui-Bang
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.133-146
    • /
    • 2013
  • While the use of internet is routine nowadays, users receive and share information through a variety of media. Through the use of internet, information delivery media is diversifying from traditional media of one-way communication, such as newspaper, TV, and radio, into media of two-way communication. In contrast of traditional media, blogs enable individuals to directly upload and share news, which can be considered to have a differential speed of information diffusion than news media that convey information unilaterally. Therefore this Study focused on the difference between online news and social media blogs. Moreover, there are variations in the speed of information diffusion because that information closely related to one person boosts communications between individuals. We believe that users' standard of evaluation would change based on the types of information. As well, the speed of information diffusion would change based on the level of proximity. Therefore, the purpose of this study is to examine the differences in information diffusion based on the types of media. And then information is segmentalized and an examination is done to see how information diffusion differentiates based on the types of information. This study used the Bass diffusion model, which has been frequently used because this model has higher explanatory power than other models by explaining diffusion of market through innovation effect and imitation effect. Also this model has been applied a lot in other information diffusion related studies. The Bass diffusion model includes an innovation effect and an imitation effect. Innovation effect measures the early-stage impact, while the imitation effect measures the impact of word of mouth at the later stage. According to Mahajan et al. (2000), Innovation effect is emphasized by usefulness and ease-of-use, as well Imitation effect is emphasized by subjective norm and word-of-mouth. Also, according to Lee et al. (2011), Innovation effect is emphasized by mass communication. According to Moore and Benbasat (1996), Innovation effect is emphasized by relative advantage. Because Imitation effect is adopted by within-group influences and Innovation effects is adopted by product's or service's innovation. Therefore, ours study compared online news and social media blogs to examine the differences between media. We also choose different types of information including entertainment related information "Psy Gentelman", Current affair news "Earthquake in Sichuan, China", and product related information "Galaxy S4" in order to examine the variations on information diffusion. We considered that users' information proximity alters based on the types of information. Hence, we chose the three types of information mentioned above, which have different level of proximity from users' standpoint, in order to examine the flow of information diffusion. The first conclusion of this study is that different media has similar effect on information diffusion, even the types of media of information provider are different. Information diffusion has only been distinguished by a disparity between proximity of information. Second, information diffusions differ based on types of information. From the standpoint of users, product and entertainment related information has high imitation effect because of word of mouth. On the other hand, imitation effect dominates innovation effect on Current affair news. From the results of this study, the flow changes of information diffusion is examined and be applied to practical use. This study has some limitations, and those limitations would be able to provide opportunities and suggestions for future research. Presenting the difference of Information diffusion according to media and proximity has difficulties for generalization of theory due to small sample size. Therefore, if further studies adopt to a request for an increase of sample size and media diversity, difference of the information diffusion according to media type and information proximity could be understood more detailed.

A Study on the Regional Characteristics of Broadband Internet Termination by Coupling Type using Spatial Information based Clustering (공간정보기반 클러스터링을 이용한 초고속인터넷 결합유형별 해지의 지역별 특성연구)

  • Park, Janghyuk;Park, Sangun;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.45-67
    • /
    • 2017
  • According to the Internet Usage Research performed in 2016, the number of internet users and the internet usage have been increasing. Smartphone, compared to the computer, is taking a more dominant role as an internet access device. As the number of smart devices have been increasing, some views that the demand on high-speed internet will decrease; however, Despite the increase in smart devices, the high-speed Internet market is expected to slightly increase for a while due to the speedup of Giga Internet and the growth of the IoT market. As the broadband Internet market saturates, telecom operators are over-competing to win new customers, but if they know the cause of customer exit, it is expected to reduce marketing costs by more effective marketing. In this study, we analyzed the relationship between the cancellation rates of telecommunication products and the factors affecting them by combining the data of 3 cities, Anyang, Gunpo, and Uiwang owned by a telecommunication company with the regional data from KOSIS(Korean Statistical Information Service). Especially, we focused on the assumption that the neighboring areas affect the distribution of the cancellation rates by coupling type, so we conducted spatial cluster analysis on the 3 types of cancellation rates of each region using the spatial analysis tool, SatScan, and analyzed the various relationships between the cancellation rates and the regional data. In the analysis phase, we first summarized the characteristics of the clusters derived by combining spatial information and the cancellation data. Next, based on the results of the cluster analysis, Variance analysis, Correlation analysis, and regression analysis were used to analyze the relationship between the cancellation rates data and regional data. Based on the results of analysis, we proposed appropriate marketing methods according to the region. Unlike previous studies on regional characteristics analysis, In this study has academic differentiation in that it performs clustering based on spatial information so that the regions with similar cancellation types on adjacent regions. In addition, there have been few studies considering the regional characteristics in the previous study on the determinants of subscription to high-speed Internet services, In this study, we tried to analyze the relationship between the clusters and the regional characteristics data, assuming that there are different factors depending on the region. In this study, we tried to get more efficient marketing method considering the characteristics of each region in the new subscription and customer management in high-speed internet. As a result of analysis of variance, it was confirmed that there were significant differences in regional characteristics among the clusters, Correlation analysis shows that there is a stronger correlation the clusters than all region. and Regression analysis was used to analyze the relationship between the cancellation rate and the regional characteristics. As a result, we found that there is a difference in the cancellation rate depending on the regional characteristics, and it is possible to target differentiated marketing each region. As the biggest limitation of this study and it was difficult to obtain enough data to carry out the analyze. In particular, it is difficult to find the variables that represent the regional characteristics in the Dong unit. In other words, most of the data was disclosed to the city rather than the Dong unit, so it was limited to analyze it in detail. The data such as income, card usage information and telecommunications company policies or characteristics that could affect its cause are not available at that time. The most urgent part for a more sophisticated analysis is to obtain the Dong unit data for the regional characteristics. Direction of the next studies be target marketing based on the results. It is also meaningful to analyze the effect of marketing by comparing and analyzing the difference of results before and after target marketing. It is also effective to use clusters based on new subscription data as well as cancellation data.

Construction of Consumer Confidence index based on Sentiment analysis using News articles (뉴스기사를 이용한 소비자의 경기심리지수 생성)

  • Song, Minchae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.1-27
    • /
    • 2017
  • It is known that the economic sentiment index and macroeconomic indicators are closely related because economic agent's judgment and forecast of the business conditions affect economic fluctuations. For this reason, consumer sentiment or confidence provides steady fodder for business and is treated as an important piece of economic information. In Korea, private consumption accounts and consumer sentiment index highly relevant for both, which is a very important economic indicator for evaluating and forecasting the domestic economic situation. However, despite offering relevant insights into private consumption and GDP, the traditional approach to measuring the consumer confidence based on the survey has several limits. One possible weakness is that it takes considerable time to research, collect, and aggregate the data. If certain urgent issues arise, timely information will not be announced until the end of each month. In addition, the survey only contains information derived from questionnaire items, which means it can be difficult to catch up to the direct effects of newly arising issues. The survey also faces potential declines in response rates and erroneous responses. Therefore, it is necessary to find a way to complement it. For this purpose, we construct and assess an index designed to measure consumer economic sentiment index using sentiment analysis. Unlike the survey-based measures, our index relies on textual analysis to extract sentiment from economic and financial news articles. In particular, text data such as news articles and SNS are timely and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. There exist two main approaches to the automatic extraction of sentiment from a text, we apply the lexicon-based approach, using sentiment lexicon dictionaries of words annotated with the semantic orientations. In creating the sentiment lexicon dictionaries, we enter the semantic orientation of individual words manually, though we do not attempt a full linguistic analysis (one that involves analysis of word senses or argument structure); this is the limitation of our research and further work in that direction remains possible. In this study, we generate a time series index of economic sentiment in the news. The construction of the index consists of three broad steps: (1) Collecting a large corpus of economic news articles on the web, (2) Applying lexicon-based methods for sentiment analysis of each article to score the article in terms of sentiment orientation (positive, negative and neutral), and (3) Constructing an economic sentiment index of consumers by aggregating monthly time series for each sentiment word. In line with existing scholarly assessments of the relationship between the consumer confidence index and macroeconomic indicators, any new index should be assessed for its usefulness. We examine the new index's usefulness by comparing other economic indicators to the CSI. To check the usefulness of the newly index based on sentiment analysis, trend and cross - correlation analysis are carried out to analyze the relations and lagged structure. Finally, we analyze the forecasting power using the one step ahead of out of sample prediction. As a result, the news sentiment index correlates strongly with related contemporaneous key indicators in almost all experiments. We also find that news sentiment shocks predict future economic activity in most cases. In almost all experiments, the news sentiment index strongly correlates with related contemporaneous key indicators. Furthermore, in most cases, news sentiment shocks predict future economic activity; in head-to-head comparisons, the news sentiment measures outperform survey-based sentiment index as CSI. Policy makers want to understand consumer or public opinions about existing or proposed policies. Such opinions enable relevant government decision-makers to respond quickly to monitor various web media, SNS, or news articles. Textual data, such as news articles and social networks (Twitter, Facebook and blogs) are generated at high-speeds and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. Although research using unstructured data in economic analysis is in its early stages, but the utilization of data is expected to greatly increase once its usefulness is confirmed.

Development of Intelligent Job Classification System based on Job Posting on Job Sites (구인구직사이트의 구인정보 기반 지능형 직무분류체계의 구축)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.123-139
    • /
    • 2019
  • The job classification system of major job sites differs from site to site and is different from the job classification system of the 'SQF(Sectoral Qualifications Framework)' proposed by the SW field. Therefore, a new job classification system is needed for SW companies, SW job seekers, and job sites to understand. The purpose of this study is to establish a standard job classification system that reflects market demand by analyzing SQF based on job offer information of major job sites and the NCS(National Competency Standards). For this purpose, the association analysis between occupations of major job sites is conducted and the association rule between SQF and occupation is conducted to derive the association rule between occupations. Using this association rule, we proposed an intelligent job classification system based on data mapping the job classification system of major job sites and SQF and job classification system. First, major job sites are selected to obtain information on the job classification system of the SW market. Then We identify ways to collect job information from each site and collect data through open API. Focusing on the relationship between the data, filtering only the job information posted on each job site at the same time, other job information is deleted. Next, we will map the job classification system between job sites using the association rules derived from the association analysis. We will complete the mapping between these market segments, discuss with the experts, further map the SQF, and finally propose a new job classification system. As a result, more than 30,000 job listings were collected in XML format using open API in 'WORKNET,' 'JOBKOREA,' and 'saramin', which are the main job sites in Korea. After filtering out about 900 job postings simultaneously posted on multiple job sites, 800 association rules were derived by applying the Apriori algorithm, which is a frequent pattern mining. Based on 800 related rules, the job classification system of WORKNET, JOBKOREA, and saramin and the SQF job classification system were mapped and classified into 1st and 4th stages. In the new job taxonomy, the first primary class, IT consulting, computer system, network, and security related job system, consisted of three secondary classifications, five tertiary classifications, and five fourth classifications. The second primary classification, the database and the job system related to system operation, consisted of three secondary classifications, three tertiary classifications, and four fourth classifications. The third primary category, Web Planning, Web Programming, Web Design, and Game, was composed of four secondary classifications, nine tertiary classifications, and two fourth classifications. The last primary classification, job systems related to ICT management, computer and communication engineering technology, consisted of three secondary classifications and six tertiary classifications. In particular, the new job classification system has a relatively flexible stage of classification, unlike other existing classification systems. WORKNET divides jobs into third categories, JOBKOREA divides jobs into second categories, and the subdivided jobs into keywords. saramin divided the job into the second classification, and the subdivided the job into keyword form. The newly proposed standard job classification system accepts some keyword-based jobs, and treats some product names as jobs. In the classification system, not only are jobs suspended in the second classification, but there are also jobs that are subdivided into the fourth classification. This reflected the idea that not all jobs could be broken down into the same steps. We also proposed a combination of rules and experts' opinions from market data collected and conducted associative analysis. Therefore, the newly proposed job classification system can be regarded as a data-based intelligent job classification system that reflects the market demand, unlike the existing job classification system. This study is meaningful in that it suggests a new job classification system that reflects market demand by attempting mapping between occupations based on data through the association analysis between occupations rather than intuition of some experts. However, this study has a limitation in that it cannot fully reflect the market demand that changes over time because the data collection point is temporary. As market demands change over time, including seasonal factors and major corporate public recruitment timings, continuous data monitoring and repeated experiments are needed to achieve more accurate matching. The results of this study can be used to suggest the direction of improvement of SQF in the SW industry in the future, and it is expected to be transferred to other industries with the experience of success in the SW industry.

A Comparison of the Designation Characteristics of Korean Scenic Sites Policies and National Park System in the United States (국내 명승 정책과 미국 국립공원 시스템의 지정 특성 비교)

  • Lee, Won-Ho;Kim, Dong-Hyun;Janet, R. Balsom
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.25-34
    • /
    • 2020
  • This study examined the definition and major values, the designated procedures and types, and the designation trend in Korean scenic sites and national parks in the United States. Based on this, the analysis of the characteristics of the designation of the two natural heritages. The results are as follows; First, Scenic Sites has characteristics of complex heritage that includes academic, historical, and humanities values on the basis of landscape. As a natural heritage based on public nature, the U.S. National Park aims to contribute to the people's natural heritage and satisfy both ecological and historical values through the protection of the landscape. Second, the designation of a scenic sites are decided through deliberation by the Cultural Heritage Committee after the request of the owner, manager, or local government or by the authority of the head of the Cultural Heritage Administration. The designated survey is divided into basic resource surveys and resource surveys by type. Since the initial designation of the Sogeumgang Mountain in Cheonghakdong, Myeongju in 1970, the number of designated scenic sites was low until the 2000s, but the number of designated scenic sites has increased rapidly since 2006 due to the policy to promote the scenic site, and the proportion of natural and historical and cultural scenic sites has been balanced. The designation of the U.S. national park is decided by the Congress or the president, and the National Park Service makes a series of decisions on whether to conduct a special resource study of provisional resources through a preliminary inspection survey, whether to satisfy the criteria for designation of national parks based on the results of special resource research, and to prioritize them. The U.S. National Parks have been expanded not only by Congress but also by the president's empowerment to designate them as national monuments. With the integrated operation of the National Park Service, the number of designated cases increased as the national park included the heritage sites under the control of various ministries. In addition, a number of historical areas were designated by the enactment of the Historical Site Act, and recreational areas were designated to provide leisure space and classified and managed in a total of 18 units. Third, the comparison of the designation characteristics of the two heritage properties confirmed that the designation of natural heritage with complex value, the classification of types according to complementary designation system and resource characteristics, the establishment of the competent ministry and the balancing of the heritage according to the designation policy. The two heritages had the characteristics of complex natural heritages that met ecological, historical and academic values at the same time based on landscape and public nature. In addition, both countries have identified a system for deliberating the designation of heritage through a basic resource survey and an in-depth designation survey, and classified each type according to the characteristics of the resource. In addition, the policies for promoting scenic sites in Korea and the integrated operation of the National Park Service in the U.S. influenced the designated aspects of the two heritage sites, balancing natural heritage with historical and cultural heritage. Fourth, the resource types and conservation management methods of Scenic site and National Park were largely related. The natural areas of the U.S. National Park include types of natural monuments in Korea as major resources, and have characteristics similar to natural scenic sites. In addition, historical resources were similar to the criteria for designation of historical and cultural scenic sites in terms of landscape, and the aspects of war and celebrity-related relics were related to the types of historic sites. In terms of conservation management, the natural area of the U.S. national park has a way of keeping the original ecosystem intact, but the Korean natural heritage protection system is likely to be useful for focusing on the resource of viscosity. Meanwhile, historical resources include historical sites and historical and cultural scenic sites in the traditional era, but historical relics in the U.S. National Parks have set a time limit to modern times for war history and celebrity-related relics, and the active provision of entertainment programs based on existing resources was derived as a difference.

An Examination into the Illegal Trade of Cultural Properties (문화재(文化財)의 국제적 불법 거래(不法 去來)에 관한 고찰)

  • Cho, Boo-Keun
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.371-405
    • /
    • 2004
  • International circulation of cultural assets involves numerous countries thereby making an approach based on international law essential to resolving this problem. Since the end of the $2^{nd}$ World War, as the value of cultural assets evolved from material value to moral and ethical values, with emphasis on establishing national identities, newly independent nations and former colonial states took issue with ownership of cultural assets which led to the need for international cooperation and statutory provisions for the return of cultural assets. UNESCO's 1954 "Convention for the Protection of Cultural Property in the Event of Armed Conflict" as preparatory measures for the protection of cultural assets, the 1970 "Convention on the Means of Prohibiting and Preventing the Illicit Import and Transfer of Ownership of Cultural Property" to regulate transfer of cultural assets, and the 1995 "Unidroit Convention on Stolen or Illegally Exported Cultural Objects" which required the return of illegally acquired cultural property are examples of international agreements established on illegal transfers of cultural assets. In addition, the UN agency UNESCO established the Division of Cultural Heritage to oversee cultural assets related matters, and the UN since its 1973 resolution 3187, has continued to demonstrate interest in protection of cultural assets. The resolution 3187 affirms the return of cultural assets to the country of origin, advises on preventing illegal transfers of works of art and cultural assets, advises cataloguing cultural assets within the respective countries and, conclusively, recommends becoming a member of UNESCO, composing a forum for international cooperation. Differences in defining cultural assets pose a limitation on international agreements. While the 1954 Convention states that cultural assets are not limited to movable property and includes immovable property, the 1970 Convention's objective of 'Prohibiting and preventing the illicit import, export and transfer of ownership of cultural property' effectively limits the subject to tangible movable cultural property. The 1995 Convention also has tangible movable cultural property as its subject. On this point, the two conventions demonstrate distinction from the 1954 Convention and the 1972 Convention that focuses on immovable cultural property and natural property. The disparity in defining cultural property is due to the object and purpose of the convention and does not reflect an inherent divergence. In the case of Korea, beginning with the 1866 French invasion, 36 years of Japanese colonial rule, military rule and period of economic development caused outflow of numerous cultural assets to foreign countries. Of course, it is neither possible nor necessary to have all of these cultural properties returned, but among those that have significant value in establishing cultural and historical identity or those that have been taken symbolically as a demonstration of occupational rule can cause issues in their return. In these cases, the 1954 Convention and the ratification of the first legislation must be actively considered. In the return of cultural property, if the illicit acquisition is the core issue, it is a simple matter of following the international accords, while if it rises to the level of diplomatic discussions, it will become a political issue. In that case, the country requesting the return must convince the counterpart country. Realizing a response to the earnest need for preventing illicit trading of cultural assets will require extensive national and civic societal efforts in the East Asian area to overcome its current deficiencies. The most effective way to prevent illicit trading of cultural property is rapid circulation of information between Interpol member countries, which will require development of an internet based communication system as well as more effective deployment of legislation to prevent trading of illicitly acquired cultural property, subscription to international conventions and cataloguing collections.

Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics (소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로)

  • Seo, Bong-Goon;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.179-196
    • /
    • 2019
  • Recently, the "Smart Consumer" has been emerging. He or she is increasingly inclined to search for and purchase products by taking into account personal judgment or expert reviews rather than by relying on information delivered through manufacturers' advertising. This is especially true when purchasing cosmetics. Because cosmetics act directly on the skin, consumers respond seriously to dangerous chemical elements they contain or to skin problems they may cause. Above all, cosmetics should fit well with the purchaser's skin type. In addition, changes in global cosmetics consumer trends make it necessary to study this field. The desire to find one's own individualized cosmetics is being revealed to consumers around the world and is known as "Finding the Holy Grail." Many consumers show a deep interest in customized cosmetics with the cultural boom known as "K-Beauty" (an aspect of "Han-Ryu"), the growth of personal grooming, and the emergence of "self-culture" that includes "self-beauty" and "self-interior." These trends have led to the explosive popularity of cosmetics made in Korea in the Chinese and Southeast Asian markets. In order to meet the customized cosmetics needs of consumers, cosmetics manufacturers and related companies are responding by concentrating on delivering premium services through the convergence of ICT(Information, Communication and Technology). Despite the evolution of companies' responses regarding market trends toward customized cosmetics, there is no "Intelligent Data Platform" that deals holistically with consumers' skin condition experience and thus attaches emotions to products and services. To find the Holy Grail of customized cosmetics, it is important to acquire and analyze consumer data on what they want in order to address their experiences and emotions. The emotions consumers are addressing when purchasing cosmetics varies by their age, sex, skin type, and specific skin issues and influences what price is considered reasonable. Therefore, it is necessary to classify emotions regarding cosmetics by individual consumer. Because of its importance, consumer emotion analysis has been used for both services and products. Given the trends identified above, we judge that consumer emotion analysis can be used in our study. Therefore, we collected and indexed data on consumers' emotions regarding their cosmetics experiences focusing on consumers' language. We crawled the cosmetics emotion data from SNS (blog and Twitter) according to sales ranking ($1^{st}$ to $99^{th}$), focusing on the ample/serum category. A total of 357 emotional adjectives were collected, and we combined and abstracted similar or duplicate emotional adjectives. We conducted a "Consumer Sentiment Journey" workshop to build a "Consumer Sentiment Dictionary," and this resulted in a total of 76 emotional adjectives regarding cosmetics consumer experience. Using these 76 emotional adjectives, we performed clustering with the Self-Organizing Map (SOM) method. As a result of the analysis, we derived eight final clusters of cosmetics consumer sentiments. Using the vector values of each node for each cluster, the characteristics of each cluster were derived based on the top ten most frequently appearing consumer sentiments. Different characteristics were found in consumer sentiments in each cluster. We also developed a cosmetics experience pattern map. The study results confirmed that recommendation and classification systems that consider consumer emotions and sentiments are needed because each consumer differs in what he or she pursues and prefers. Furthermore, this study reaffirms that the application of emotion and sentiment analysis can be extended to various fields other than cosmetics, and it implies that consumer insights can be derived using these methods. They can be used not only to build a specialized sentiment dictionary using scientific processes and "Design Thinking Methodology," but we also expect that these methods can help us to understand consumers' psychological reactions and cognitive behaviors. If this study is further developed, we believe that it will be able to provide solutions based on consumer experience, and therefore that it can be developed as an aspect of marketing intelligence.