• Title/Summary/Keyword: 시뮬레이션모델링

Search Result 2,912, Processing Time 0.035 seconds

Modeling Residual Water in the Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell and Analyzing Performance Changes (고분자 전해질막 연료전지의 기체확산층 내부 잔류수 모델링 및 성능변화해석)

  • Jiwon Jang;Junbom Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Polymer electrolyte membrane fuel cells have the advantage of low operating temperatures and fast startup and response characteristics compared to others. Simulation studies are actively researched because their cost and time benefits. In this study, the resistance of water residual in the gas diffusion layer (GDL) of the unit cell was added to the existing equation to compare the actual data with the model data. The experiments were conducted with a 25 cm2 unit cell, and the samples were separated into stopping times of 0, 10, and 60 minutes following primary impedance measurement, activation, and polarization curve data acquisition. This gives 0, 10, and 60 minutes for the residual water in the GDL to evaporate. Without the rest period, the magnitude of the performance improvement was not significantly different at the same potential and flow rate, but the rest period did improve the performance of the membrane electrode assembly when measuring impedance. By changing the magnitude of the resistance reduction to an overvoltage, the voltage difference between the fuel cell model with and without residual water was compared, and the error rate in the high current density region, which is dominated by concentration losses, was reduced.

The Construction and Application of Planning Support System for the Sustainable Urban Development (지속가능한 도시개발을 위한 계획지원시스템의 구축과 활용에 관한 연구)

  • Lee, Hee-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.1 s.118
    • /
    • pp.133-155
    • /
    • 2007
  • The sustainable urban development has emerged as a new paradigm of urban studies in recent years. A review of the literature of land use and transport policies in relation to sustainable development reveals a consensus that the main objectives of sustainable strategy should decrease the numbers and length of journeys, and change the land use pattern towards mixed use and high density. However, there is a lack of empirical research as to what types of policies might influence effectively the reduction in the energy consumption and emission of $CO_2$. in order to sustain urban development. This paper tries to construct the conceptual structure of the PSS(planning support system), which is designed to the simulation of the probable effects of policies and planning of different kinds in cities, and evaluate the sustainablilty level according to construct the structure of the PSS(planning support system), which is designed to the simulation of the probable effects of policies and planning of different kinds in cities, and evaluate the sustainablilty level according to the alternative scenarios. The PSS is composed of three components (input-modeling-output). The core of PSS is integrating land use-transport-environment modeling. The advantages of integrating land use-transport-environment modeling are well known, but there are very few such integrated modeling packages in practice. So this paper tries to apply TRANUS software, which is an integrated land use and transport model. The TRANUS system was calibrated to city of Yongin for the base year. The purpose of the application of TRANUS to Yongin is to examine the operability of TRANUS system in Korea. From the outputs and results of operating the system, TRANUS may be effectively used to evaluate the effects of alternative sustainable urban development policies, since sustainablilty indicators can be extracted from several aspects such as land use consumption, total trips, distance and cost, energy consumption, ratio of transport split.

Development of Analytic Hierarchy Process or Solving Dependence Relation between Multicriteria (다기준 평가항목간 중복도를 반영한 AHP 기법 개발)

  • 송기한;홍상연;정성봉;전경수
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.15-22
    • /
    • 2002
  • Transportation project appraisal should be precise in order to increase the social welfare and efficiency, and it has been evaluated by only a single criterion analysis such as benefit/cost analysis. However, this method cannot assess some qualitative items, and cannot get a proper solution for the clash of interests among various groups. Therefore, the multi-criteria analysis, which can control these problems, is needed, and then Saaty has developed one of these methods, AHP(Analytic Hierarchy Process) method. In AHP, the project is evaluated through weighted score of the criteria and the alternatives, which is surveyed by a questionnaire of specialists. It is based on some strict suppositions such as reciprocal comparison, homogeneity, expectation, independence relationship between multi-criteria, but supposing that each criterion has independence relation with others is too difficult in two reasons. First, in real situation, there cannot be perfect independence relationship between standards. Second, individuals, even though they are specialists of that area, do not feel the degree of independence relation as same as others. This paper develops a modified AHP method for solving this dependence relationship between multi-criteria. First of all. in this method, the degree of dependence relationship between multi-criteria that the specialist feels is surveyed and included to the weighted score of multi-criteria This study supposes three methods to implement this idea. The first model products the degree of dependence relationship in the first step for calculating the weighted score, and the others adjust the result of weighted score from the basic AHP method to the dependence relationship. One of the second methods distributes the cross weighted score to each standard by constant ratio, and the other splits them using Fuzzy measure such as Bel and Pl. Finally, in order to validate these methods, this paper applies them to evaluate the alternatives which can control public resentments against Korean rail path in a city area.

A Study on the Performance Evaluation of G2B Procurement Process Innovation by Using MAS: Korea G2B KONEPS Case (멀티에이전트시스템(MAS)을 이용한 G2B 조달 프로세스 혁신의 효과평가에 관한 연구 : 나라장터 G2B사례)

  • Seo, Won-Jun;Lee, Dae-Cheor;Lim, Gyoo-Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.157-175
    • /
    • 2012
  • It is difficult to evaluate the performance of process innovation of e-procurement which has large scale and complex processes. The existing evaluation methods for measuring the effects of process innovation have been mainly done with statistically quantitative methods by analyzing operational data or with qualitative methods by conducting surveys and interviews. However, these methods have some limitations to evaluate the effects because the performance evaluation of e-procurement process innovation should consider the interactions among participants who are active either directly or indirectly through the processes. This study considers the e-procurement process as a complex system and develops a simulation model based on MAS(Multi-Agent System) to evaluate the effects of e-procurement process innovation. Multi-agent based simulation allows observing interaction patterns of objects in virtual world through relationship among objects and their behavioral mechanism. Agent-based simulation is suitable especially for complex business problems. In this study, we used Netlogo Version 4.1.3 as a MAS simulation tool which was developed in Northwestern University. To do this, we developed a interaction model of agents in MAS environment. We defined process agents and task agents, and assigned their behavioral characteristics. The developed simulation model was applied to G2B system (KONEPS: Korea ON-line E-Procurement System) of Public Procurement Service (PPS) in Korea and used to evaluate the innovation effects of the G2B system. KONEPS is a successfully established e-procurement system started in the year 2002. KONEPS is a representative e-Procurement system which integrates characteristics of e-commerce into government for business procurement activities. KONEPS deserves the international recognition considering the annual transaction volume of 56 billion dollars, daily exchanges of electronic documents, users consisted of 121,000 suppliers and 37,000 public organizations, and the 4.5 billion dollars of cost saving. For the simulation, we analyzed the e-procurement of process of KONEPS into eight sub processes such as 'process 1: search products and acquisition of proposal', 'process 2 : review the methods of contracts and item features', 'process 3 : a notice of bid', 'process 4 : registration and confirmation of qualification', 'process 5 : bidding', 'process 6 : a screening test', 'process 7 : contracts', and 'process 8 : invoice and payment'. For the parameter settings of the agents behavior, we collected some data from the transactional database of PPS and some information by conducting a survey. The used data for the simulation are 'participants (government organizations, local government organizations and public institutions)', 'the number of bidding per year', 'the number of total contracts', 'the number of shopping mall transactions', 'the rate of contracts between bidding and shopping mall', 'the successful bidding ratio', and the estimated time for each process. The comparison was done for the difference of time consumption between 'before the innovation (As-was)' and 'after the innovation (As-is).' The results showed that there were productivity improvements in every eight sub processes. The decrease ratio of 'average number of task processing' was 92.7% and the decrease ratio of 'average time of task processing' was 95.4% in entire processes when we use G2B system comparing to the conventional method. Also, this study found that the process innovation effect will be enhanced if the task process related to the 'contract' can be improved. This study shows the usability and possibility of using MAS in process innovation evaluation and its modeling.

Structural and functional characteristics of rock-boring clam Barnea manilensis (암석을 천공하는 돌맛조개(Barnea manilensis)의 구조 및 기능)

  • Ji Yeong Kim;Yun Jeon Ahn;Tae Jin Kim;Seung Min Won;Seung Won Lee;Jongwon Song;Jeongeun Bak
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.413-422
    • /
    • 2022
  • Barnea manilensis is a bivalve which bores soft rocks, such as, limestone or mudstone in the low intertidal zone. They make burrows which have narrow entrances and wide interiors and live in these burrows for a lifetime. In this study, the morphology and the microstructure of the valve of rock-boring clam B. manilensis were observed using a stereoscopic microscope and FE-SEM, respectively. The chemical composition of specific part of the valve was assessed by energy dispersive X-ray spectroscopy (EDS) analysis. 3D modeling and structural dynamic analysis were used to simulate the boring behavior of B. manilensis. Microscopy results showed that the valve was asymmetric with plow-like spikes which were located on the anterior surface of the valve and were distributed in a specific direction. The anterior parts of the valve were thicker than the posterior parts. EDS results indicated that the valve mainly consisted of calcium carbonate, while metal elements, such as, Al, Si, Mn, Fe, and Mg were detected on the outer surface of the anterior spikes. It was assumed that the metal elements increased the strength of the valve, thus helping the B. manilensis to bore sediment. The simulation showed that spikes located on the anterior part of the valve received a load at all angles. It was suggested that the anterior part of the shell received the load while drilling rocks. The boring mechanism using the amorphous valve of B. manilensis is expected to be used as basic data to devise an efficient drilling mechanism.

Enhanced Transport and Risk of a Highly Nonpolar Pollutant in the Presence of LNAPL in Soil-groundwater System: In Case of p-xylene and benz[a]anthracene (LNAPL에 의한 소수성 유기오염물질의 지하환경 내 이동성 변화가 위해성 증가에 미치는 영향: p-xylene과 benz[a]anthracene의 경우)

  • Ryu, Hye-Rim;Han, Joon-Kyoung;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.25-31
    • /
    • 2007
  • Characterizing the risk posed by a mixture of chemicals is a challenging task due to the chemical interactions of individual components that may affect their physical behavior and hence alter their exposure to receptors. In this study, cell tests that represent subsurface environment were carried out using benz[a]anthracene (BaA) and p-xylene focusing on phasetransforming interaction to verify increased mobility and risk of highly sorbed pollutants in the presence of less sorbed, mobile liquid pollutants. A transport model was also developed to interpret results and to simulate the same process on a field scale. The experimental results showed that BaA had far greater mobility in the presence of p-xylene than in the absence of that. The main transport mechanisms in the vadose zone were by dissolution to p-xylene or water. The transport model utilizing Defined Time Steps (DTS) was developed and tested with the experimental results. The predicted and observed values showed similar tendency, but the more work is needed in the future study for more precise modeling. The field-scale simulation results showed that transport of BaA to groundwater table was significantly faster in the presence of NAPL, and the oral carcinogenic risk of BaA calculated with the concentration in groundwater was 15${\sim}$87 times larger when mixed with NAPL than when solely contaminated. Since transport rate of PAHs is very slow in the subsurface without NAPL and no degradation of PAHs was considered in this simulation during the transport, the increase of risk in the presence of NAPL is expected to be greater for the actual contaminated site.

Mechanism and Spray Characteristics of a Mini-Sprinkler with Downward Spray for Prevention of Drop Water (하향 분사식 미니스프링클러의 낙수방지 메카니즘과 살수 특성)

  • Kim, Hong-Gyoo;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • A study was conducted to find mechanism and spray characteristics of a mini-sprinkler with downward spray to develop a new design type to be able to prevent drop water. The experiments were executed in a plastic greenhouse to minimize the effect of the wind. Data was collected at five different operation pressures and at 4 different raiser heights. Spray characteristics of the sprinkler such as effective radius, effective area, mean application depth, absolute maximum application depth, effective maximum application depth and coefficient of variation were determined. In order to analyze the mechanism and packing supporter of sprinkler, the numerical simulation using ABAQUS was performed. The optimum pressure for preventing drop water was determined.

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.

A Study on the 3D Measurement Data Application: The Detailed Restoration Modeling of Mireuksajiseoktap (미륵사지석탑 정밀복원모형 제작을 중심으로 한 3차원 실측데이터의 활용 연구)

  • Moon, Seang Hyen
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.2
    • /
    • pp.76-95
    • /
    • 2011
  • After dismantled, Mireuksajiseoktap(Stone pagoda of Mireuksa Templesite) is being in the stage of restoration design. Now, different ways - producing restoration model, a 3 dimension simulation - have been requested to make more detailed and clearer restoration design prior to confirmation of its restoration design and actual restoration carry-out. This thesis proposes the way to build the detailed model for better restoration plan using extensively-used Reverse Engineering technique and Rapid Prototyping. It also introduces each stage such as a 3-dimension actual measurement, building database, a 3-dimension simulation etc., to build a desirable model. On the top of that, this thesis reveals that after dismantled, MIruksaji stone pagoda's interior and exterior were not constructed into pieces but wholeness, so that its looks can be grasped in more virtually and clearly. Secondly, this thesis makes a 3-dimension study on the 2-dimension design possible by acquiring basic materials about a 3-dimension design. Thirdly, the individual feature of each member like the change of member location can be comprehended, considering comparing analysis and joint condition of member. Lastly, in the structural perspective this thesis can be used as reference materials for structure reinforcement design by grasping destructed aspects of stone pagoda and weak points of the structure. In dismantlement-repair and restoration work of cultural properties that require delicate attention and exactness, there may be evitable errors on time and space in building reinforcement and restoration design based on a 2-dimension plan. Especially, the more complicate and bigger the subject is, the more difficult an analysis about the status quo and its delicate design are. A series of pre-review, based on the 3-dimension data according to actual measurement, can be one of the effective way to minimize the possibility that errors about time - space happen by building more delicate plan and resolving difficulties.

The Study of Radiation Exposed dose According to 131I Radiation Isotope Therapy (131I 방사성 동위원소 치료에 따른 피폭 선량 연구)

  • Chang, Boseok;Yu, Seung-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.653-659
    • /
    • 2019
  • The purpose of this study is to measure the (air dose rate of radiation dose) the discharged patient who was administrated high dose $^{131}I$ treatment, and to predict exposure radiation dose in public person. The dosimetric evaluation was performed according to the distance and angle using three copper rings in 30 patients who were treated with over 200mCi high dose Iodine therapy. The two observer were measured using a GM surverymeter with 8 point azimuth angle and three difference distance 50, 100, 150cm for precise radion dose measurement. We set up three predictive simulations to calculate the exposure dose based on this data. The most highest radiation dose rate was showed measuring angle $0^{\circ}$ at the height of 1m. The each distance average dose rate was used the azimuth angle average value of radiation dose rate. The maximum values of the external radiation dose rate depending on the distance were $214{\pm}16.5$, $59{\pm}9.1$ and $38{\pm}5.8{\mu}Sv/h$ at 50, 100, 150cm, respectively. If high dose Iodine treatment patient moves 5 hours using public transportation, an unspecified person in a side seat at 50cm is exposed 1.14 mSv radiation dose. A person who cares for 4days at a distance of 1 meter from a patient wearing a urine bag receives a maximum radiation dose of 6.5mSv. The maximum dose of radiation that a guardian can receive is 1.08mSv at a distance of 1.5m for 7days. The annual radiation dose limit is exceeded in a short time when applied the our developed radiation dose predictive modeling on the general public person who was around the patients with Iodine therapy. This study can be helpful in suggesting a reasonable guideline of the general public person protection system after discharge of high dose Iodine administered patients.