• Title/Summary/Keyword: 시멘트 클링커

Search Result 122, Processing Time 0.025 seconds

Properties of Portland Cement Clinker Using Polysilicon Sludge (폴리실리콘 슬러지를 원료로 사용한 포틀랜드 시멘트 클링커의 특성)

  • Lee, Seung-Heun;Lee, Se-Jin;Woo, Yang-Yee;Park, Jeoung-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.328-334
    • /
    • 2014
  • This study reviewed the usability of sludge, a material that is additionally created when polysilicon (a solar light material) is produced, as the raw material for cement clinker. It was evaluated that when cement clinker is produced, the chloric component of polysilicon acted as a mineralizer in the firing process. In addition, the physical features of the produced cement were measured. The setting time of the produced cement was reduced as the amount of content of polysilicon sludge increased. Such results were drawn because the chloric component acted as hydration accelerator and enhanced the dissolution of calcium hydroxide that was formed by hydration of $C_3S$. Furthermore, for such reason, on the day 1, the compression strength of mortar increased as the content of polysilicon sludge increased. In day 3, 7, and 28, the tendency in which the compression strength increasing up to 5% of the amount of added polysilicon sludge was shown. It is because when clinker was produced, the chloric component increased the amount of $C_3S$ mineral created, thus enhancing the compression strength after day 3.

Study on Formation of Cement Clinker from the Mixture of Oyster Shell, Casting Dust and BOF Slag (패각-주조분진-전로슬래그 조합물의 시멘트 클링커 생성거동에 관한 연구)

  • 천성민;송태웅
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1235-1240
    • /
    • 2003
  • The mixtures which are in the chemical composition of Portland cement were prepared from oyster shell, casting dust and BOF slag. The clinkerbility and the behaviour of formation of clinker minora]s were studied using the mixtures mainly by the mineral and microstructural observation. By virtue of the characteristics of starting raw materials, the clinkering temperature was lower as much as 100$^{\circ}C$ than that of a mixture prepared from normal raw materials. Uncombined calcium oxide was vanished entirely below 1350$^{\circ}C$. and the formation of major cement minerals such as alite and belite could be nearly accomplished without too much liquid phase within 1400$^{\circ}C$.

A Study on the Characteristics of Chlorine-Containg Cement Depending on Changes in Gypsum and Iron Modulus (이수석고 함량과 Iron Modulus 변화에 따른 염소 함유 시멘트의 특성에 관한 연구)

  • Lee, Young-Jun;Kim, Nam-Il;Cho, Jeong-Hoon;Seo, Sung-Kwan;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.53-60
    • /
    • 2022
  • The physical properties of chlorine-containing cement were analyzed to optimize the operational conditions when waste resources containing chlorine were used in the cement manufacturing process. Cement with clinker to gypsum weight ratios of 95:5 and 93:7 were manufactured. In addition, the iron modulus (IM) of clinker was set to 1.3, 1.5, and 1.7 to evaluate the burnability and physical properties of clinker. With constant chlorine content, increasing gypsum content resulted in a decrease in the 3 day-compressive strength, whereas the 28 day-compressive strength increased. In addition, flow and setting time also increased with increasing gypsum content. As the IM decreased, burnability was improved, free-CaO content decreased, alite and ferrite content increased, and compressive strength increased In particular, the compressive strength of IM 1.3 was approximately 14% greater than that of IM 1.7.

A Study on the Characteristics of Clinker and Cement as Chlorine Content (염소 함량에 따른 클링커 및 시멘트의 물성에 관한 연구)

  • Lee, Young-Jun;Kim, Nam-Il;Cho, Jeong-Hoon;Seo, Sung-Kwan;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.10-16
    • /
    • 2021
  • In this study, a clinker was prepared using raw materials with CaCl2. The characteristics of the chlorine-added clinker and cement were analyzed. The clinker modulus were set to Lime Saturation Factor (LSF) 92, Silica modulus (SM) 2.5, and Iron Modulus (IM) 1.5. The physical properties of cement using the chlorine-containing clinker were characterized. As the chlorine content increased, the free-CaO content in the clinker decreased, and that in the 2000 ppm clinker was reduced by approximately 40% compared to that in the 0 ppm clinker. There was an increase in the amount of chlormayenite, with a content of up to 3.4% present in the 2000 ppm clinker. The amounts of alite and belite also slightly increased. The compressive strength of mortar at 3 days and 7 days increased as the chlorine content increased. This trend was presumed to arise from the effect of hydration, which was promoted by the presence of chlorine. The compressive strength of 1000 ppm mortar increased by approximately 20% compared to that of 0 ppm mortar.