• Title/Summary/Keyword: 시동성능

Search Result 145, Processing Time 0.021 seconds

Estimation of the operating characteristics of a turbopump driven by a pyro-starter (파이로시동기로 작동되는 터보펌프의 구동특성 예측)

  • Kim Cheul-Woong;Seol Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.167-170
    • /
    • 2006
  • For a short time a pyre-starter should turn the blades of a turbine to the adequate rotational speed by a single operation. Through this process the pressures of the components of a propellant rise rapidly up to the operating point, and the components enter into a gas-generator. Combustion in the gas-generator occurs to keep the turbopumps working. In this research characteristic parameters of a pyre-starter which correspond to the required performance of the turbopump before the gas-generator starts to work were selected

  • PDF

Design Procedures of SCRamjet Engine Intake and Numerical Analysis (스크램제트 엔진 흡입구의 설계 및 3차원 성능해석)

  • Kang, Sang-Hun;Shin, Hun-Bum;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.339-343
    • /
    • 2006
  • Model SCRamjet Engine intake is designed for Ground test. The designed Intake provides hot and slow flow with the combustor. Flow separation is controlled by the shock wave segregation based on the Korekegi criteria. With Kantrowitz limit analysis, side wall cut out region is also set for the self start.

  • PDF

A Study on Performance Degradation of PEMFC by Repetitive Startup/Shutdown Cycling (시동/정지 반복에 따른 고분자전해질 연료전지의 성능 저하에 관한 연구)

  • Jo, Yoo-Yeon;Cho, Eun-Ae;Kim, Jung-Hyeun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.317-322
    • /
    • 2009
  • To investigate degradation mechanism of PEMFC operated with repetitive startup/shutdown cycling, i-V characteristics, impedance, cyclic voltamograms were measured. OCV decreased from 0.967 to 0.951 V while the cell voltage at 800mA/$cm^2$ from 0.657 to 0.563V, implying that the electrodes rather than membrane electrolyte was damaged during the cycling operation. Electrochemical analyses supported that the performance degradation could be mainly attributed to degradation of the electrodes such as a decrease in electrochemical active surface area rather than degradation of membrane.

Sensorless Vector Control with On-Line Stator Resistance Tuning of Wound Induction Motor Using a MRAS (MRAS를 이용한 권선형 유도전동기의 온-라인 고정자 저항 조정에 의한 속도센서리스 벡터제어)

  • Lee Jae-Hak;Kim Yoon-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.422-425
    • /
    • 2001
  • 권선형 유도전동기는 기동시에 충분히 큰 저항을 외부에서 삽입하여 기동전류를 작게하는 동시에 기동 토크를 크게 할 수 있다. 또한, 유도전동기의 각 기동 방식중에서 가장 우수한 시동특성을 가지고 있으며 크레인, 시멘트공장 등 중부하 시동이 요구되는 경우 널리 사용되고 있다. 권선형 유도전동기 드라이브 시스템의 전류, 토크, 위치 및 속도 등의 제어를 위하여 일반적으로 산업현장에서는 Pl 제어기가 많이 적용되고 있다. 그러나 이러한 시스템은 센서 부착시 여러가지 환경적 제약으로 인한 전체시스템의 성능 저하를 가져올 수 있어 이를 개선하기 위한 센서리스 벡터제어가 활발히 연구되고 있다. 본 논문은 권선형 유도 전동기의 센서리스 벡터제어를 위해 MRAS 기법을 적용하였고, 기존의 MRAS 기법 적용시 발생하는 파라미터 변동에 따른 속도추정오차를 개선하기 위해 센서리스 벡터제어의 속도제어에 크게 영향을 미치는 고정자 저항을 온라인으로 튜닝함으로서 파라미터 변화에 강인한 센서리스 속도제어를 구현하였다. 제안된 기법의 타당성 및 유효성을 디지털 컴퓨터에 의한 시뮬레이션에 의해 확인하였다.

  • PDF

A Study on the Corrosion Prevention of the Integral Series Generator for Military Vehicles (군용차량용 엔진일체형 직렬 발전기 부식 방지에 관한 연구)

  • Kang, Tae-Woo;Kim, Seong-Gon;Shin, Cheol-Ho;Lee, Kye-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.74-79
    • /
    • 2019
  • The military vehicle produces electric power through an engine-integrated serial hybrid generator that is connected to the engine and does not have a separate generator installation space. However, depending on the mechanical characteristics of the connection between the generator and the engine, iron oxide for internal rusting and lubrication grew scattered. The iron oxide is adhered to the starter to deteriorate the starting performance, and there is a problem that the noise of the leg due to wear of the gear is increased. To solve this problem, the connection spline material and the surface treatment of the engine were improved and the shape was changed to a grease sealing type to prevent the generation of iron oxide inside. As the shape of the generator connector composing the shafting system was changed, the integrity of the structure was confirmed through the torsional endurance test. In addition, through the actual vehicle load test, it was verified that no corrosion occurred during the target life span without internal corrosion. It was confirmed that the anti-scattering structure of the grease effectively suppresses the generation of iron oxide, thereby reducing the noise generated from the generator. In this paper, we propose a fundamental solution to the degradation of the starter and the noise generation by preventing the back corrosion caused by the serial hybrid generator installed between the engine and the transmission.

An Experimental Study on Performance of Second Throat Exhaust Diffusers of Different Configuration (2차목 초음속 디퓨저의 형상 변화에 따른 성능에 관한 실험적 연구)

  • Jeon, Jun Su;Kim, Wan Chan;Yeoun, Hae In;Kim, Min Sang;Ko, Young Sung;Han, Young Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.279-288
    • /
    • 2014
  • Second throat supersonic exhaust diffusers (STEDs) were designed to simulate high-altitude conditions according to the normal-shock model. Experimental studies were performed on the STEDs to investigate how performance characteristics varied with the length and diameter of the STED using high-pressure nitrogen gas. The variation in performance due to length indicated that the performance of the STED could be very slightly improved by adjusting the diffuser inlet length ($L_d$), and it could be significantly improved by optimizing the second throat length ratio ($L_{st}/D_{st}$) and the divergence length ($L_s$). The starting and vacuum chamber pressures exhibited the highest level of performance near ($A_d/A_{st}$) of the design point.

Hydrogen Peroxide Gas Generator with Dual Catalyst Beds (이원 촉매를 이용한 과산화수소 가스발생기)

  • Rang, Seong-Min;An, Seong-Yong;Gwon, Se-Jin;Gwon, Hyeok-Mo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.87-92
    • /
    • 2006
  • The rocket grade hydrogen peroxide has been widely used as a monopropellant in propulsion systems. In the present paper, we described an experimental study of a catalytic reactor that employs two stage catalyst beds to enhance the low temperature performance of the reactor inlet. $K_2MnO_4$ was chosen as the catalyst for the initial stage of the reactor bed for its superior behavior in the low temperature regime. Alumina sol-gel method was successfully applied for coating $K_2MnO_4$ on a reactor bed of cordierite monolith. LSC was used for the catalyst of the second stage of the reactor. The reactor with combined catalyst beds was built and tested to exhibit superior performance in low temperature regime and high decomposition efficiency.

Configuration and Ground Tests of Solar Cell and Fuel Cell Powered System for Long Endurance UAV (장기체공 무인기용 태양전지-연료전지를 활용한 동력원 구성 및 지상시험)

  • Park, Byeongseob;Kim, Hyuntak;Baek, Seungkwan;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.94-101
    • /
    • 2015
  • Each of power systems of solar cell and fuel cell were configured and validated for long endurance UAV, as the preliminary research for the integration of power systems. Solar power system consisted of solar modules fabricated by solar cells of Sunpower's C60, commercial solar MPPT controller and Li-po battery, and then was validated. The re-start characteristics of hydrogen production from $NaBH_4$ hydrolysis was validated for operating the commercial fuel cell. The average voltage drop of Li-po battery in solar power system was -2.9 V/hour. The performance of re-start characteristics of $NaBH_4$ hydrolysis was stable in sequence mode of mission profile. Each of single systems were satisfied for the proposed mission profile.

Study on Performance of an Fuel Pressure Regulator under Failure Condition in an Electric Control Diesel Engine (전자제어 디젤엔진의 연료압력 레귤레이터 고장에 따른 진단 및 성능 연구)

  • Kim, Tae-Jung;Cho, Hong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1677-1683
    • /
    • 2015
  • To cope with exhaust gas regulation, Diesel engine applied to electronic control system. As it accurately regulated the injected fuel mass and the fuel efficiency and the output are increased but the noise and the vibration are decreased. In order to keep the performance of Electronic Diesel Control System, it is important to accurately control the fuel pressure. However, when the regulator of fuel pressure is not controlled properly, the failure phenomenons(starting failure, staring delay, accelerated failure, engine mismatch et al.) occur because the fuel pressure is not stabilize. In this study, effects on a fuel pressure, engine rotating speed according to the control rate of fuel-pressure regulator are investigated in order to analyzed the performance variation with failure of fuel-pressure regulator. As a result, when the control rate of a fuel-pressure regulator is 4%~6% lower than that of standard condition, the variation of engine's rpm and return fuel flow is increased, and the abnormal condition was occurred. Besides, it is possible to diagnose the failures on fuel-pressure regulator under these conditions.

Liquid Rocket Engine System of Korean Launch Vehicle (한국형발사체 액체로켓엔진 시스템)

  • Cho, Won-Kook;Park, Soon-Young;Moon, Yoon-Wan;Nam, Chang-Ho;Kim, Chul-Woong;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.56-64
    • /
    • 2010
  • A system design has been conducted of the liquid rocket engine for Korean launch vehicle (KSLV-II, Korea Space Launch Vehicle II). The present turbopump-fed liquid rocket engine of vacuum thrust 76 ton and vacuum specific impulse 297 sec adopts gas generator cycle. The combustion pressure of the regeneratively cooled combustor is 60 bar. The propellant is LOx/kerosene. The engine is started by pyrostarter and the combustor is ignited by TEA (TriEthylAluminium). The engine system performance and the subsystems performance requirements are given through energy balance analysis. The combustion pressure, specific impulse and the engine mass are analyzed to be reasonable comparing with the published data. The startup analysis method which will be used in the future has been validated against the turbopump-gas generator coupled test. The tuning method for performance variation of the engine which is not actively controled has been prepared by mode analysis and performance deviation analysis.