• Title/Summary/Keyword: 시공 방법

Search Result 2,457, Processing Time 0.025 seconds

A Study on the Dynamic Effect Influencing to Urban Railway Structures by Vibration from Near-field Excavating Work (근접장 굴착진동이 도시철도 구조물에 미치는 동적영향 연구)

  • Woo-Jin, Han;Seung-Ju, Jang;Sang-Soo, Bae;Seung-Yup, Jang;Myung-Seok, Bang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.41-53
    • /
    • 2022
  • In the excavation work like blasting/excavator work bordering on the urban railway, the dynamic safety of railway structures like tunnel, open-cut box structure and elevated bridge was investigated by numerical analysis in this study. The practically presented criteria on influential zones at the blasting work in the construction industry was numerically checked in cases of the precise vibration-controlled blasting (type II) and the small scale vibration-controlled blasting (type III) and it was shown that the criteria on blasting work methods needed to be supplemented through continuous field tests and numerical analyses. The influence of excavation vibration by mechanical excavators was especially investigated in case of earth auger and breaker. The numerical analysis of tunnel shows that the criteria on vibration velocities from the regression analysis of field test values was conservative. The amplification phenomenon of excavating vibration velocity was shown passing through the backfilling soil between the earth auger and the open-cut box structure. It was shown that the added-vibration on the superstructure of elevated bridge was occurred at the bottom of pile like earthquake when the excavator vibration was arriving at the pile toe. The systematic and continuous research on the vibration effect from excavating works was needed for the safety of urban railway structures and nearby facilities.

An Experimental Study on Seismic Performance of Two-story Reinforced Concrete Frames Retrofitted with Internal Steel Frame and Wall Type Friction Damper (내부 철골끼움골조 및 벽체형 마찰댐퍼(WFD)로 보강된 2층 철근콘크리트골조 내진성능에 대한 실험적 연구)

  • Yoo, Chang-Gi;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.64-72
    • /
    • 2022
  • In this study, in order to confirm the seismic performance of reinforced concrete frames retrofitted with Wall Friction Damper(WFD), the test was conducted by setting two-story Reinforced concrete frames (reference specimen, OMF-N and specimen retrofitted with internal H-shaped steel frame and WFD, OMF-ALL(H)) as main variables. The WFD Seismic Retrofit Method is a mixture of strength improvement and energy dissipation methods. To prevent the pre-destruction of existing structure by friction force before sufficient energy dissipation of WFD, the internal H-shaped steel frame and chemical anchor that penetrates the side of the beam were used to install WFD. According to the test results, the OMF-N specimen showed an brittle failure pattern caused by the shear force of the R/C column after the maximum strength was expressed. The OMF-ALL(H) specimen showed that the reduction of pinching effect and the failure of the RC column occurred. Also, the maximum strength, cumulative energy dissipation and ductility of OMF-ALL(H) increased 3.01 times, 7.2 times and 1.72 times for OMF-N. As a results, test results revealed that the WFD Seismic Retrofit Method installed on Reinforced concrete structure improves the seismic performance and the strengthening effect is valid.

The Experimental Study of the Ultimate Behavior of an Avalanche Tunnel Corner Rigid Joint Composited with a Centrifugal Formed Beam (초고강도 원심성형 보가 합성된 피암터널 우각부의 극한거동에 관한 실험연구)

  • Lee, Doo-Sung;Kim, Sung-Jin;Kim, Jeong-Hoi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.128-138
    • /
    • 2022
  • In this study, in order to apply ultra-high-strength concrete beams of 100 MPa or more manufactured by centrifugal molding as the superstructure of the avalanche tunnel, the purpose is to verify the structural safety of the corner rigid joint in which the centrifugal molded beam is integrated with the substructure, which is the negative moment area. A full-size specimen was manufactured, and loading tests and analysis studies were performed. In order to expect the same effect that the maximum moment occurs in the corner joint part of the upper slab end when the standard model of the avalanche tunnel is designed with a load combination according to the specification, a modified cantilever type structural model specimen was manufactured and the corner rigid joint was fixedly connected. A study was performed to determine the performance of the method and the optimal connection construction method. The test results demonstrated that the proposed connection system outperforms others. Despite having differences in joint connection construction type, stable flexural behavior was shown in all the tested specimens. The proposed method also outperformed the behavior of centrifugally formed beams and upper slabs. The behavior of the corner rigid joint analysis model according to the F.E. analysis showed slightly greater stiffness compared to the results of the experiment, but the overall behavior was almost similar. Therefore, there is no structural problem in the construction of the corner rigid joint between the centrifugally formed beam and the wall developed in this study.

Development of an Intelligent Illegal Gambling Site Detection Model Based on Tag2Vec (Tag2vec 기반의 지능형 불법 도박 사이트 탐지 모형 개발)

  • Song, ChanWoo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.211-227
    • /
    • 2022
  • Illegal gambling through online gambling sites has become a significant social problem. The development of Internet technology and the spread of smartphones have led to the proliferation of illegal gambling sites, so now illegal online gambling has become accessible to anyone. In order to mitigate its negative effect, the Korean government is trying to detect illegal gambling sites by using self-monitoring agents or reporting systems such as 'Nuricops.' However, it is difficult to detect all illegal sites due to limitations such as a lack of staffing. Accordingly, several scholars have proposed intelligent illegal gambling site detection techniques. Xu et al. (2019) found that fake or illegal websites generally have unique features in the HTML tag structure. It implies that the HTML tag structure can be important for detecting illegal sites. However, prior studies to improve the model's performance by utilizing the HTML tag structure in the illegal site detection model are rare. Against this background, our study aimed to improve the model's performance by utilizing the HTML tag structure and proposes Tag2Vec, a modified version of Doc2Vec, as a methodology to vectorize the HTML tag structure properly. To validate the proposed model, we perform the empirical analysis using a data set consisting of the list of harmful sites from 'The Cheat' and normal sites through Google search. As a result, it was confirmed that the Tag2Vec-based detection model proposed in this study showed better classification accuracy, recall, and F1_Score than the URL-based detection model-a comparative model. The proposed model of this study is expected to be effectively utilized to improve the health of our society through intelligent technology.

Behavior of Lateral Resistance according to Embed Depth of Pile for the Wind Power Foundation Reinforced with Piles in the Rocky Layer (암반지반에서 말뚝으로 보강된 풍력발전 기초의 말뚝 근입깊이에 따른 수평저항력 거동)

  • Kang, Gichun;Kim, Dongju;Park, Jinuk;Euo, Hyunjun;Park, Hyejeong;Kim, Jiseong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.49-56
    • /
    • 2022
  • This study conducted to obtain the lateral resistance of a wind power foundation reinforced with piles through an model experiment. In particular, the lateral resistance of the foundation was compared with the existing gravity-type wind power foundation by integrating the pile, the wind power generator foundation, and the rocky ground. In addition, changes in the lateral resistance and bending moment of the pile were analyzed by embeded depths of the pile. As a result, it was found that the lateral resistance increased with the depth of embedment of the piles. In particular, the pile's resistance increase ratio was 2.11 times greater in the case where the pile embedded up to the rock layer than the case where the pile was embedded into the riprap. It was found that the location of the maximum bending moment occurred at the interface between the wind turbine foundation and the riprap layer when the pile embeded to the rock layer. Through this, as the lateral resistance of the wind power foundation reinforced with piles is greater than that of the existing gravity-type wind power foundation, it is understood that it can be a more advantageous construction method in terms of safety.

A Study on Analysis of Construction Monitoring Cost and Improvement Measures of Railway Tunnel Construction in Seoul (서울시 철도터널 건설공사의 공사계측비 분석 및 개선방안 연구)

  • Jong-Tae Woo
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.18-30
    • /
    • 2023
  • Purpose: This study is to contribute to the development of monitoring technology through the increase of confidence in construction monitoring by deriving the analysis of construction monitoring cost and improvement measures of railway tunnel construction in Seoul. Method: It presents the status on design and contract of construction monitoring cost, status on application construction monitoring cost and its analysis, analysis on safety management cost and quality management cost, expansion of application of the price calculation standard for monitoring management services to improve this, and monitoring for direct order of ordering organization. Results: If the monitoring management service that was meanwhile ordered as included in the construction work is performed by the directly selected company of ordering organization through the preliminary screening for bidding qualification, then the improvement of monitoring quality and the accurate monitoring data can be secured. Conclusion: For the price calculation standard for monitoring management service, the application of actual cost addition method under the Engineering Promotion Act and the calculation standard of monitoring management cost for standard estimation for ground survey should be extended through the direct order of ordering organization, not the method to be included in the net construction cost where it is performed by a subcontractor via contractor.

Evaluation of the Lateral Influence Range on Temporary Structures for a Train Operating at 80km/h (시속 80km/h의 열차 운행시 가시설 구조물에 미치는 수평영향범위 평가)

  • Jong-Chul Kim;Yeong-Bae Kim;Tae-Hyun Hwang;Kang-Il Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.35-45
    • /
    • 2023
  • In accordance with the urban development project, cases of constructing temporary wall structures for ground excavation in the vicinity of railway structures are increasing. In addition, the complaints about train vibration are also increasing from people living in large buildings newly built after installing the temporary wall structures. In order to solve this problem, a method for reducing train vibration is considered from the design stage of the building, and a vibration reduction system is installed on the structure when the building is newly constructed. However, the vibration reduction method established at the structure design stage can be determined through the results of field measurements or dynamic numerical analysis for a specific area, and there is a limit to evaluating whether the established vibration reduction method is appropriate due to the lack of objective research data. Therefore, in order to provide objective basic data when establishing a vibration reduction method, this study performed the dynamic numerical analysis for a operating train with a speed 80km/h by applying differently the depths of railway structures, the distances between railways and temporary wall structures, and ground conditions. It was found that the range of influence of a train operating at 80 km/h was within 4.5D of the lateral distance from the railway structure in the case of the condition where the temporary wall was installed.

A Study on the Application of Lateral Earth Pressure to Earth Retaining Wall Considering Ground Characteristics in Jeju I - Case of Strut Construction - (제주 지역의 지반 특성을 고려한 흙막이벽의 측방토압 적용에 관한 연구 I -스트럿 공법 시공 사례)

  • Do-Hyeong Kim;Dong-Wook Lee;Hee-Bok Choi;Kwon-Moon Ko
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • This paper describes the comparative results of measured and predicted values for the horizontal displacement of earth retaining wall based on two field cases, In order to examine the application of lateral earth pressure to the earth retaining wall considering the typical ground characteristics (clinker layer) in Jeju. The prediction of the lateral earth pressure causing the horizontal displacement of the retaining wall was performed by elasto-plastic analysis using Rankine earth pressure, Terzaghi & Peck modified lateral earth pressure, and Tschebotarioff lateral earth pressure. As a result, it was confirmed that the maximum horizontal displacement predicted at site A was about 5 times larger than the measured value, and the ground with maximum horizontal displacement occurred by the prediction was found to be the clinker layer. In the case of site B, the predicted value was 4 to 7 times larger than the measured value. In addition, the ground with maximum horizontal displacement and the tendency of horizontal displacement were very different depending on the prediction method. This means that research on lateral earth pressure that can consider regional characteristics needs to be continued, because it is due to the multi-layered ground characteristics of the Jeju area in which bedrock layers and clinker layers are alternately distributed,

A Study on Optimal Reinforcing Type of Precast Retaining Wall Reinforced by Micropiles (마이크로파일로 보강된 프리캐스트 콘크리트 옹벽의 최적보강형태에 관한 연구)

  • Kim, Hong-Taek;Park, Jun-Yong;Yoo, Chan-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.89-99
    • /
    • 2006
  • The PCRW (Precast Concrete Retaining Wall) has many advantages compared with cast in place concrete retaining wall : shorter construction period, excellency of quality and minimum interference with the adjacent structure and traffics. However, shallow foundation type of PCRW, which has comparatively better ground condition, has some disadvantages such as difficulty in transportation and higher cost due to the size of PCRW being expanded by resisting only with self-weight if there is no other supplementary reinforcement. The presented study, in order to complement such disadvantages of PCRW, have applied the micropile method. The micropile method has advantages like low-cost and high-efficiency and does not require huge space, because it can be executed with small size equipment. However, the mechanical behavior characteristics of the PCRW reinforced by micropile, which is installed to improve the reinforcement effect, is not yet clearly identified and there is no suggested standard as to the length, diameter, install angle and install position of micropiles. Hence, this method is yet being designed depend on engineer's experience. In this study, various laboratory model tests as to sliding and overturning were performed in order to identify and present the optimum type of reinforcement and reinforcement effect of the PCRW reinforced by micropiles. In addition, it also executed numerical analysis for the purpose of verifying the optimum type of reinforcement for micropiles based on the results of laboratory model tests. The optimum reinforcement type of micropiles was estimated by model test and numerical analysis. The length of micropiles is 0.4 times wall height and the diameter is 0.04 times wall length.

Fracture Behaviors of Jointed Rock Model Containing an Opening Under Biaxial Compression Condition (이축압축 조건에서 공동이 존재하는 유사 절리암반 모델의 파괴 거동)

  • SaGong, Myung;Yoo, Jea-Ho;Park, Du-Hee;Lee, J.S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.17-30
    • /
    • 2009
  • Underground construction such as tunneling can induce damages on the surrounding rock mass, due to the stress concentration of in situ stresses and excessive energy input during construction sequence, such as blasting. The developed damage on the rock mass can have substantial influence on the mechanical and hydraulic behaviors of the rock masses around a tunnel. In this study, investigation on the generation of damage around an opening in a jointed rock model under biaxial compression condition was conducted. The joint dip angles employed are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made using early strength cement and water. From the biaxial compression test, initiation and propagation of tensile cracks at norm to the joint angle were found. The propagated tensile cracks eventually developed rock blocks, which were dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The development of the tensile crack can be explained under the hypothesis that the rock segment encompassed by the joint set is subjected to the developing moment, which can be induced by the geometric irregularity around the opening in the rock model. The experiment results were simulated by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.