• Title/Summary/Keyword: 시공 단계

Search Result 1,340, Processing Time 0.029 seconds

Analysis of Concrete Frame Structures Considering the Construction Sequences (시공단계를 고려한 콘크리트 프레임 구조물의 해석)

  • 곽효경;서영재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.171-184
    • /
    • 1999
  • 이 논문은 시공단계를 고려한 콘크리트 프레임 구조물의 거동 해석을 다루고 있다. 고층건물의 경우 하루에 시공이 완료되지 않으므로 각 시공단계에 따라 콘크리트의 시간의존적 현상은 다르게 발생된다. 이를 위하여 이 논문에서는 일반적인 프레임 해석기법에 콘크리트의 시간의존적 특성을 고려하였다. 이 연구에 도입된 해석기법은 단면을 가상의 층으로 나누고 각층은 일축상태로 가정한 적층단면을 사용하였다. 요소는 평면 보요소를 사용하였으며 강성행렬은 변위법을 바탕으로 유도하였고 전체적인 구조해석은 비선형 구조해석 방법의 하나인 복합법을 사용하였다. 콘크리트의 시간의존적 특성을 고려하기 위하여 단면의 각 층에서 크리프와 건조수축에 의한 변형률을 계산하였으며 크리프는 크리프 Compliance의 전개에 기본을 둔 1차 순환적 단계 알고리즘을 사용하였다. 끝으로 이 연구에서 제안된 해석모델을 이용하여 프레임해석 및 기둥축소에 관한 예제를 해석하였다.

  • PDF

Structural Reliability Evaluation Considering Construction Stage and Epistemic Uncertainty of Suspension Bridges (현수교의 시공절차와 인위적 불확실성을 고려한 구조신뢰성 평가)

  • Han, Sung Ho;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.181-188
    • /
    • 2009
  • This study presented the basic data for determining reasonable construction method and evaluating the structural safety of suspension bridges. The analytical program was developed to conduct initial shape and natural frequency analysis, construction stage analysis and reliability analysis considering construction sequences. This program was based on analysis models of suspension bridges and reliability theories used in the previous study. A construction method was established considering various construction variables such as construction order and construction direction of girder and synchronized construction of main and side span etc. The dynamic construction analysis by a construction scheme was conducted with the developed program. Benefits of the characteristic analysis by the construction scheme was presented estimating structural response of critical members respectively. Structural reliability analysis by construction stage was conducted considering aleatory uncertainties. The safety of suspension bridges by established construction method was quantitatively estimated using reliability index and failure probability. Analytical results were re-estimated considering epistemic uncertainties, and critical percentile distributions of risk at the construction stage were presented using the frequency histogram.

Behavior Due to Construction Step in Steel Deck Bridge by Large Block Construction Method (대블록시공법에 따른 강상판교의 시공단계별 거동)

  • Lee, Seong-Haeng;Kim, Kyoung-Nam;Hahm, Hyung-Gil;Jung, Kyoung-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.97-105
    • /
    • 2010
  • The displacements of steel deck bridge due to construction step are measured, and three dimensional analysis with full modeling is carried out to compare with the measured results. Three dimensional structural analyses considering construction step by large block construction method are accomplished with verified model. The conclusions are as follows. 1. Comparing the data of grid analysis with the result of 3D full modeling in steel deck bridge, the design method using grid analysis has a limit for describing the displacements of curved bridge. The analysis of 3D full modeling has been proved as more accurate method. The differentiation of results in two methods is about 10%~20%. 2. It is verified that the maximum displacement of during construction is 1.7 times larger than the displacement of final construction. 3. The bridge behavior considering the construction step is somewhat different from that of final stage in whole structure and the displacement and stress during construction is larger than that of final construction. Therefore, it needs the reasonable structural design considering the construction step to get economical efficiency and a high competitive construction.

Slab Design of U-Channel Bridge Considering Construction Sequence (시공단계를 고려한 U-Channel Bridge의 슬래브 설계)

  • Choi, Dong-Ho;Kim, Sung-Jae;Jun, Sung-Yong;Kim, Yong-Sik;Kim, Sung-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.265-268
    • /
    • 2008
  • In this paper behavior of U-Channel Bridge (UCB) and the slab design considering construction sequence was studied. The segments of UCB are produced in the factory and transported to the site by trailers, and the segments are fabricated in the construction field. In this sequence the supporting conditions are changed. Four steps that were the segment precasting step, the segment carrying step, the segment placed on the erection beam step, and the completion step were chosen by supporting condition. In each step model using the frame and plate elements was proposed and structural analysis was performed. Four construction steps were to be considered in the process of slab analysis. The design method of slab was proposed considering construction sequence.

  • PDF

Effects of Seismic Loads with Different Return Period on Residential Building with RC Shear Wall Structure under Construction (주거용 RC 벽식 건물의 시공 중 재현주기에 따른 지진하중의 영향)

  • Choi, Seong-Hyeon;Kim, Jea-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.43-50
    • /
    • 2022
  • Even though the structural safety is confirmed in the design stage, the structural safety is not guaranteed in the construction stage because the structural system is not completed. In addition, since the construction period is shorter than the period of use of the building after completion, it is excessive to apply the same seismic load to the construction stage as in the design stage. ASCE 37-14 presents the concept of seismic load reduction factor during construction, but does not provide a clear application method. Therefore, in this study, the seismic load reduced according to the return period was applied to the example model of a residential middle-rise RC building. The construction stage of the example model was divided into five-story units, and seismic load with the change of the return period was applied to the construction stage models to analyze the change of seismic load during construction and to check the sectional performances of structural members. By comparing the design strength ratio of the shear wall at the design stage and the construction stage, the range of seismic load magnitudes that can assure the safety during construction of a residential middle-rise RC building was analyzed in terms of the return period.

Development of Model Requirements Checklist for Utilizing BIM in Construction Phase - Focused on the MEP - (시공단계 BIM 활용을 위한 모델 요구조건 체크리스트 개발 - MEP를 중심으로 -)

  • Kim, Woojin;Park, Jinho;Cha, Yongwoon;Hyun, Changtaek;Han, Sangwon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.22-31
    • /
    • 2019
  • The application of BIM that can manage and integrate information generated during the entire life cycle of buildings in domestic and overseas construction projects is becoming active. When BIM is utilized in the construction phase, it can shorten the construction period, reduce the occurrence of reworks and improve collaboration capability. However, there are limitations in applying BIM to the construction phase due to the insufficient definition level of domestic BIM guidelines and inadequate design standards. In this regard, this study developed BIM model requirements checklist for the application of BIM in the construction phase. To develop the checklists, 21 domestic and overseas BIM guidelines, three public construction projects and four private construction projects to which construction BIM was applied, were analyzed. Based on the guidelines and cases, a total of 62 construction BIM model requirements (31 model objects and 31 attribute rules) and proposed construction BIM model requirement checklists by dividing the 61 requirements according to the requirement and purpose for utilization were identified. It is expected that the practical applications of the checklists proposed in this study will improve the level of BIM model in construction phase. In addition, this study has its significance as a basic research that can be used in the development of standardized guidelines for BIM model in construction phase from academic aspects.

Case Study on Application of DMU to Civil Infra Structures to Improve Constructibility (토목구조물분야에서 DMU 적용을 통한 시공성개선 사례 연구)

  • Park, Kyoung-Lae;Lee, Kwang-Myong;Lee, Yoon-Bum;Lee, Chung-Hee;Lee, Tae-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.320-323
    • /
    • 2011
  • 본 논문에서는 BIM의 기술 중 하나인 DMU(Digital Mock-Up)을 실제 프로젝트에 적용하여 업무 효율에 기여한 결과를 소개한다. 삼성물산 건설부문의 경우 DMU는 건설 프로젝트의 입찰단계 및 시공계획 단계에서 적용되어 많은 성과를 거두었다. 입찰단계의 경우 대상 프로젝트의 교량, 터널 등의 구조물을 실제와 같은 지형조건 및 설계 조건으로 모델링하여 프로젝트의 개요 파악, 정보의 공유, 선정된 공법의 효과 분석 등에 적용하였으며 시공단계에서는 주로 복잡한 구조물의 철근 간섭 검토 및 효율적인 배근 방법 분석을 위한 도구로 사용되었다. 적용결과 공기단축, 원가절감, 시공성 향상에 기여하였으며, DMU는 향후 프로젝트 관리도구로 통합되어 구조물공사의 원가절감 및 생산성 향상에 기여할 것으로 예상된다.

  • PDF

Effects of Long Term Deformation of Concrete on Internal Member Forces of Tall Buildings (초고층 건물에서 콘크리트의 장기거동이 부재내력에 미치는 영향)

  • Shin, Seung-Hak;Kim, Han-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.297-300
    • /
    • 2010
  • 본 논문에서는 일반적인 해석, 시공단계를 고려한 해석, 시공단계와 장기거동을 고려한 해석의 3가지 해석방법을 사용하여 수평부재의 설계에 적합한 해석방법을 제안하였다. 80층의 2D 구조모델에 3가지 해석방법을 적용하여 각 해석방법에 따라 부등축소량, 수직부재에 작용하는 축력, 수평부재의 단부에 작용하는 내력의 해석결과를 얻어 비교하였다. 또한 부재의 내부에서 철근과 콘크리트의 하중분담율의 시간에 따른 변화양상을 알아보았다. 해석결과 시공단계에 의한 영향은 수평부재에 작용하는 축력과 부등축소량 예측, 부재 내력 해석에 있어서 반드시 고려되어야 함을 알 수 있었다. 장기거동의 효과는 기둥축소에는 크게 영향을 미치지만 수직부재의 축력, 수평부재의 내력에는 변형만큼의 영향은 보이지 않는다. 시공시의 보정량을 결정하기 위해서는 장기거동이 반드시 고려되어야 하지만 부재의 단면설계의 목적으로는 제외되어도 무방할 것으로 판단된다.

  • PDF

Construction Stage Analysis of Hybrid Composite Cable-Stayed Girder Bridge Using Eccentrically Loaded Derrick Crane (편중 가능한 사장교 가설용 데릭 크레인을 이용한 합성형 복합 사장교 시공 단계 해석)

  • Park, Taekwun;Kim, Moon Kyum;Won, Jong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.277-286
    • /
    • 2010
  • Derrick or caterpillar crane is generally used for the long-span/cable-stayed bridge construction by pre-cast segment lifting from over-land or water transportation. The heavy weight of them, however, could make defects on unstable under-construction structure and, furthermore a method of conventional segment transportation is also able to occur additional time and cost. In this study, in order to improve conventional construction method, the newly developed derrick crane is mainly considered. It could be not only eccentrically loadable on constructing girder but having rotatable boom for segment transportation from back-side. A series of construction stage using developed derrick crane is defined and also its numerical analysis is conducted. To reflect load characteristics of developed derrick crane on construction stage analysis, on/out of service load is separately calculated by considering vertical/lateral rotation range of boom and it is loaded on 4 fixed positions of crane. The derrick crane on this study could be time and cost saving solution for cable-stayed bridge construction and also make contributions to construction load reduction in its process.

Analyses of Structural Performances for Reinforced Concrete Middle-Rise Residential Building under Construction (중층 규모 철근콘크리트 주거형 건물의 시공 중 구조성능 분석)

  • Ko, Jun-Young;Kim, Jae-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.96-103
    • /
    • 2019
  • Middle-rise reinforced concrete residential buildings account for a large portion of the Korea, and structural performance analysis are needed for problems that could occur during the construction of such buildings. Thus, a middle-rise reinforced concrete residential building with 25 stories are selected as a sample model for structural performance analysis. The structural analyses are performed by dividing a sample model into the construction stage models of the 5th, 10th, 15th, 20th and 25th floors and the completion stage models with the design completed. For the comparisons of structural performances, Eigenvalue analysis results and lateral-load-resisting capabilities and structural design performances of structural members are analyzed. As a result of analyses, it was confirmed that both the construction and completion stage do not exceed KBC criteria limits at the lateral displacement and story drift ratio, and structural design performances of structural members confirm structural safety in all components except for some members of the wall. Therefore, it was concluded that if structural stability is obtained during the completion stage of a middle-rise reinforced concrete residential building, structural stability is secured under construction.