• Title/Summary/Keyword: 시공조건(지반손실)

Search Result 26, Processing Time 0.02 seconds

Study on the Optimal Construction Method for the Compaction Method of Hydraulic Filling in Metropolitan Areas (도심지 물다짐 공법의 적정 시공방법에 관한 연구)

  • Jeong, Dal-Yeong;Jang, Jong-Hwan;Chung, Jin-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 2020
  • This paper suggests a proper hydraulic filling method in downtown areas. Road subsidence on roadways and sidewalks in downtown areas can result in vehicle damage and casualties. The representative cause of road subsidence is the fraudulent construction in nearby construction sites. A deficiency of excavation restoration causes approximately 25~49% of subsidence. This is performed by equipment or manpower. Hydraulic filling is used in backfilling narrow pipe conduits and spaces between structures. On the other hand, standard specifications and quality assurance standards regarding hydraulic filling principles and construction conditions are insufficient. Therefore, in-door model experiments on hydraulic filling principles, backfilling material, and compaction efficiency were performed. This paper suggests guidelines by investigating and analyzing construction status. In conclusion, thrown backfilling material has a particle size distribution and permeability coefficient as major factors, and detailed standards of the factors are suggested. To improve the compaction efficiency, 90% or more, compaction by the floor should be in units of 0.3m while ensuring a lower drainage layer. When an H-shape stabilizing pile is pulled out after filling, additional hydraulic filling should be in the disturbance range.

Study on Optimum Design for Embankment Construction on Soft Ground Treated by SCP (SCP개량지반상에 성토시공 시 최적설계에 관한 연구)

  • Chae, Jong-gil;Park, Yeong-Mog;Jung, MinSu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.251-258
    • /
    • 2009
  • In this study, the optimum design conditions for embankment construction on soft clay layer improved by soil compaction pile (SCP) are discussed by comparing the practical design method to the reliability design which is based on the loss function and advanced first order second moment (AFOSM) method. The results are summarized as follows; 1) the relationship between safety factor and failure probability becomes heavy exponentially, failure probability decreases rapidly till 1% approximately until safety factor is smaller than 1.2 and after then, failure probability decrease gradually along the increase of the safety factor. The design safety factor of 1.2 may be the critical value that has been established on considering both relationships appropriately, 2) the safety factor of 1.15 at the minimum expected total cost is a little smaller than the design safety factor of 1.2 and the failure probability is about 1%, 3) the sensitivities of the ratio of stress share and the internal friction angle of sand is larger than the variables related the undrained shear strength of soft layer. This result means that the distribution characteristic of n and ${\phi}$ influences on the stability analysis considerably and they should be considered necessarily on stability analysis of embankment on soft layer improved by SCP, 4) new failure points of the input variables at the design safety factor of 1.2(below failure probability of 0.1~0.3%) is far 1~2 times of standard deviation from the initial design values of themselves.

Numerical analyses using CFD on the pressure losses of the grout flow with variation of joint roughness and grout features (전산유동역학을 이용한 절리 거칠기 및 주입재 특성에 따른 그라우트 주입 시 압력 손실 해석)

  • Sagong, Myung;Ryu, Sung-ha
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.989-1002
    • /
    • 2018
  • Grouting for the rock joint is to strengthen the rock strata by infiltrating cement grout materials into the rock joints. Grouting is one of a field of study which is difficult to develop deterministic and quantitative design approach because of multiphase behaviors of grout materials and 3 dimensional features of rock joints. Therefore, GIN (Grouting Intensity Number) can be a good index with appropriate monitoring of pressure and volume of grout. In this paper, we investigate the effects of joint roughness (JRC) and rheology of cement material during the infiltration of cement grout material into rock joint through CFD (computational fluid dynamics) analyses. With rough joint surface and increase of WC ratio, the frictional resistance during the grouting increases. The results have been summarized with polynomial correlations.

Assessment of structural fire resistance of a fire-proofed immersed tunnel under tunnel fire scenarios (화재시나리오별 침매터널 구조물의 화재저항성 평가)

  • Choi, Soon-Wook;Chang, Soo-Ho;Kim, Heung-Yon;Jo, Bong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.429-441
    • /
    • 2010
  • In this study, fire resistance of a fireproof material sprayed upon an immersed tunnel was experimentally evaluated under $HC_{inc}$ and IS0834(duration of 4 hours) fire scenarios. Under $HC_{inc}$ fire scenario, the maximum inner temperatures of a concrete specimen at the depth of 0, 25 and 50 mm from the interface between the structure and the fire-proofing layer were $311^{\circ}C$, $194^{\circ}C$ and $142^{\circ}C$ respectively. Similarly, the corresponding maximum temperatures under IS0834 fire scenario were $332^{\circ}C$, $222^{\circ}C$ and $179^{\circ}C$ respectively. From the results, it was revealed that the two different fire scenarios assumed in this study have almost the same fire capacity as each other in the maximum temperature concept. In addition, a structural analysis of the immersed tunnel under $HC_{inc}$ fire scenario was carried out to verify the effects of the fireproof material on its structural stability. Material loss and deterioration of a concrete specimen without any fire-proofing measure was also experimentally evaluated to obtain input parameters for the structural analysis under such a severe fire scenario. From the results, it was confirmed that the application of fireproof measures to the immersed tunnel is essential for its structural stability even under a severe fire scenario.

Evaluation of Characteristics of G-class Cement for Geothermal Well Cementing (지열 발전정 시멘팅을 위한 G-class 시멘트 특성 평가에 관한 연구)

  • Won, Jongmuk;Jeon, Jongug;Park, Sangwoo;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.29-38
    • /
    • 2013
  • The G-class cement is commonly used in practice for geothermal well cementing in order to protect a steel casing that is designed to transport hot water/steam from deep subsurface to ground surface during operating a geothermal power plant. In order to maintain optimal performance of geothermal wells, physical properties of the cementing material should be satisfactory. In this paper, relevant factors (i.e., groutability, uniaxial compression strength, thermal conductivity and free fluid content) of the G-class cement were experimentally examined with consideration of various water-cement (w/c) ratios. Important findings through the experiments herein are as follows. (1) Groutability of the G-class cement increases by adding a small dose of retarder. (2) There would be a structural defect caused when the w/c ratio is kept higher in order to secure groutability. (3) Thermal conductivity of the G-class cement is small enough to prevent heat loss from hot steam or water to the outer ground formation during generating electricity. (4) The G-class cement does not form free water channel in cementing a geothermal well. (5) The Phenolphthalein indicator is applicable to the distinction of the G-class cement from the drilling mud.

Geophysical Techniques for Underwater Landslide Monitoring (수중 산사태 모니터링을 위한 지반물리탐사기술)

  • Truong, Q. Hung;Lee, Chang-Ho;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.5-16
    • /
    • 2007
  • The monitoring and investigation of underwater landslide help to understand its mechanism, increase the usefuless of design and construction and reduce the losses. This paper presents three high resolution geophysical techniques electrical resisitance, ultrasonic wave reflection imaging, and shear wave tomography conducted to determine the lab-scaled submerged landslide. Electrical resistance profiles of a soil mass obtained by an electrical resistance probe provide detailed information to assess the spatial distribution of the soil mass with milimetric resolution. An ultrasonic wave image obtained by recording the reflections from interfaces of different impedance materials permits detecting layers and landslide with submilimetric resolution. The pixel based image of immersed landslides is created by the inversion of the boundary information achieved from the traveling time of shear waves. The experimental results show that the ultrasonic wave imaging and the electrical resistance can provide complementary information; and their association with S-wave tomography image can produce a 3-D view of the underwater landslide. This study suggests that geophysical techniques may be effective tools for the detection of the underwater landslides and spatial distribution offshore.