• Title/Summary/Keyword: 시공량

Search Result 1,175, Processing Time 0.036 seconds

실례를 통한 초고층 건물 기둥의 부등축소량 예측 및 시공오차 보정

  • 송진규
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.62-69
    • /
    • 1997
  • 본 고에서는 고층건물의 건설과정에서 발생하는 시간의 진행에 따른 기둥의 (장기)변형을 정확히 예측하고 이를 시공중에 보정하도록 함으로써 비구조요소의 강도와 사용을 만족시키기 위한 방법론을 제시하였다. 이 방법론은 실험적 통계치를 기초로 한 약산해법으로서 실무에 쉽게 적용할 수 있다. 52층 RC 건물에 대한 적용 결과 기둥에 발생하는 축소량에 가장 큰 영향을 미치는 것은 탄성변형이며, 건조수축의 효과가 가장 미세한 것으로 나타났다. 그러나, 2년 이상의 장기 변형이 지속될 경우 크립변형의 영향이 탄성변형에 비해 더욱 증가할 것으로 판단된다. 고층의 RC건물인 경우 기둥간 부등축소량의 최대치(=최대 시공오차)는 중간층 근처에서 발생하는 것으로 나타났다.

  • PDF

Effects of Long Term Deformation of Concrete on Internal Member Forces of Tall Buildings (초고층 건물에서 콘크리트의 장기거동이 부재내력에 미치는 영향)

  • Shin, Seung-Hak;Kim, Han-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.297-300
    • /
    • 2010
  • 본 논문에서는 일반적인 해석, 시공단계를 고려한 해석, 시공단계와 장기거동을 고려한 해석의 3가지 해석방법을 사용하여 수평부재의 설계에 적합한 해석방법을 제안하였다. 80층의 2D 구조모델에 3가지 해석방법을 적용하여 각 해석방법에 따라 부등축소량, 수직부재에 작용하는 축력, 수평부재의 단부에 작용하는 내력의 해석결과를 얻어 비교하였다. 또한 부재의 내부에서 철근과 콘크리트의 하중분담율의 시간에 따른 변화양상을 알아보았다. 해석결과 시공단계에 의한 영향은 수평부재에 작용하는 축력과 부등축소량 예측, 부재 내력 해석에 있어서 반드시 고려되어야 함을 알 수 있었다. 장기거동의 효과는 기둥축소에는 크게 영향을 미치지만 수직부재의 축력, 수평부재의 내력에는 변형만큼의 영향은 보이지 않는다. 시공시의 보정량을 결정하기 위해서는 장기거동이 반드시 고려되어야 하지만 부재의 단면설계의 목적으로는 제외되어도 무방할 것으로 판단된다.

  • PDF

Control of Thermal Cracking by Pipe-Cooling System in Double T-Beam Bridge (파이프쿨링에 의한 Double T-beam 교량의 온도균열제어에 관한 연구)

  • 정철헌;홍민기;전세진;박세진
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2002
  • 매스 콘크리트 구조물에서는 콘크리트 타설 후 시멘트의 수화열로 인한 온도응력에 의해서 온도균열의 발생 가능성이 매우 높다. 따라서, 매스 콘크리트 시공시, 온도균열을 구조물의 내구성 관점에서 최대한 억제시킬 필요가 있다. 최근에는 국내에서도 단위시멘트량이 많은 배합을 이용하는 고강도 콘크리트 구조물의 시공이 증가되고 있다. 이와 같은 매스 콘크리트 구조물은 단위시멘트량이 많기 때문에 부재내 수화열에 의한 온도의 상승 속도가 빠르기 때문에 시공에 앞서 사전에 설계, 재료 및 시공 측면에서 온도균열 제어 대책을 검토할 필요가 있다.(중략)

Determination of Proper Application Rate of Curing Compound for Cement Concrete Pavement (콘크리트 포장 양생제의 적정살포량 결정 연구)

  • Kim, Jang-Rak;Suh, Young-Chan;Ahn, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.45-55
    • /
    • 2005
  • It is known that the Q/C(Quality Control) in the early age of portland cement concrete(PCC) pavement gives a huge effect on long term pavement performance. Thus, many studies regarding the construction of PCC pavement have focused on how to assure construction quality at the early age stage. Curing is one of the most important factor in Q/C of PCC pavement. Membrane curing that protects the evaporation of moisture by placing an impermeable layer on the slab surface is the most common practice for curing the PCC pavement. In order to improve the membrane curing practice, the rate of curing compound should be optimized. However, the optimum rate of curing compound considering Korean weather and environmental conditions has not been specified in the pavement construction specifications. In this study, a proper application rate was recommended in terms of minimizing evaporation with several full-scale tests where various rates of curing compound have been applied. Four test sites on the expressway were enlisted during the summer of 2002 and 2003. Application rates tested were in the range of $0. The rate of evaporation, the temperature pattern of the slab and the pulse velocity of concrete surface have been monitored at each test construction. The result from this study showed that the rate of current construction was approximately $160ml/m^2$ and that approximately $400ml/m^2$ of curing application was recommended as the proper rate for minimizing the moisture evaporation.

  • PDF

A Study on Settlement Prediction of Concrete-faced Rockfill Dam Using Measured Data During Construction and After Impounding (시공 중 및 담수 후 계측데이터를 이용한 CFRD의 침하량 예측 연구)

  • Lee, Chungwon;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.5-13
    • /
    • 2015
  • In the present study, the prediction methods of the crest settlement after impounding and the maximum internal settlement during dam construction were proposed through the analysis on settlement data at 38 monitored points of 36 Concrete-Faced Rockfill Dams (CFRDs). The results from this analysis provided that the crest settlement and the maximum internal settlement are increased in proportion to the dam height and the void ratio. However, the relationship between internal settlement and dam height for each void-ratio range plotted in semi-logarithmic scale is the nearly same. Also, the prediction of the crest settlement of the CFRD is possible through the maximum internal settlement during dam construction. In addition, it seems that the valley shape highly affects the dense dam body with high construction modulus. The results of this study will provide the useful tool for the design, construction and management of CFRDs.

Forecasting Final Displacement With Displacement Functions Using Deformation Measurements While Constructing a Tunnel (계측치와 변위함수에 의한 시공 중인 터널의 최종변위 예측)

  • Kim, Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.408-420
    • /
    • 2010
  • It is important to forecast the final deformation of a tunnel during construction for evaluating its mechanical stability. In this study, the final deformation of a tunnel is forecasted by fitting tunnel deformations measured while excavating to a displacement function and exterpolating it. The tunnel for the study was built in two stages divided into an upper and a lower part. During the lower part construction of the tunnel, the displacement function forecasts the final incremental displacement well compared to the increment measured after completion of the tunnel. It is because the critical initial displacement occurred on passing the measurement pins can be adequately measured during excavating the lower part, which can not be measured during the upper part excavation of the tunnel.

Thermal Stresses of Roller Compacted Concrete Dam Considering Construction Sequence and Seasonal Temperature (시공단계 및 계절별 온도영향을 고려한 롤러다짐콘크리트댐의 온도응력 해석)

  • Cha, Soo-Won;Jang, Bong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.881-891
    • /
    • 2008
  • The purpose of the present study is to investigate the influence of seasonal temperature variation on the thermal stresses in roller compacted concrete dam(RCD) structures. Using the finite element code, DIANA performs 2-D transient temperature and resultant stress analysis for RCD. Time variability of the mesh geometry is considered in order to simulate successive phases of the structure's construction. The main analysis variables are construction sequence, concrete temperature and ambient temperature. The results show principal tensile stress of hot-weathering concrete is higher than that of cold-weathering concrete. In some case the index of thermal cracking excesses 1.0, RCD also needs thermal management on placing temperature according to weather condition.

An Experimental Study on the Heave Characteristics of DCM Heaving Soil (DCM 부상토의 융기 특성에 대한 실험적 연구)

  • Eonsang Park;Seungdo Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.5-12
    • /
    • 2023
  • In this study, the amount of heaving soil and the heave characteristics of the heaving soil generated at the actual site were quantitatively analyzed through DCM laboratory test construction. By reproducing a series of construction processes of the DCM method in a large-scale soil tank close to the actual site, the amount of heaving soil was predicted and the elevation characteristics such as elevation, diffusion range, diffusion angle and amount of elevation of the heaving soil were evaluated. As a result of the laboratory test construction, the actual elevation in terms of similarity within the DCM improvement section is 0~8.18m, and an average of 3.50m is observed. The actual diffusion range of the heaving soil converted to the similarity ratio is distributed from 28.0 to 38.0m on the left and right sides of the improvement section. The total amount of heaving soil calculated by the SUFFER program based on the results of the laboratory test construction is 19,901m3. Compared with the injected slurry amount of 16,992m3, the amount of heave compared to the injected amount is analyzed as 85.4%. The diffusion angle of DCM heaving soil, which analyzed the results of DCM laboratory test construction with the SUFFER program, is measured to be 30.0~38.0° at a depth of 50.0m, and is evaluated as an average of 34.0°. On the other hand, based on the DCM laboratory test construction and the analysis results using the program performed in this study, the amount of heaving soil at the DCM depths of 40.0m and 60.0m is predicted.

Calculation of Basic Unit of Carbon Emissions in Construction Stage of the Road Infrastructure (도로시설물의 전과정 탄소배출량 산정을 위한 시공단계 탄소배출원단위 구축)

  • Kwak, In-Ho;Kim, Kun-Ho;Cho, Woo-Hyoung;Park, Kwang-Ho;Hwang, Young-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.107-112
    • /
    • 2015
  • Carbon emissions in construction stage is very high because lots of construction machines and materials are required to be used at a road construction stage. Many researcher carried out application of carbon emissions estimation methodology during the life cycle of road infrastructure in order to reduce greenhouse gas emissions in the road sector. But the calculation of carbon emissions is difficult because data collection is difficult and calculation procedure is complex. In this study, a basic unit of carbon emissions in construction stage of the road infrastructure was developed in order to get the quantitative determination of carbon that occurs. Carbon emissions of the expressway and common state road was calculated by using the basic unit of carbon emissions and application plan of basic unit of carbon emissions are presented.