• Title/Summary/Keyword: 시공과정

Search Result 976, Processing Time 0.033 seconds

A City Desirable for Living, A Sustainable Community - Sustainable Development and Housing Viewed through Urban Hanok Residential Areas and Hanyangdoseong Neighborhood Village in Seoul - (살고 싶은 도시, 지속가능한 공동체 - 한옥주거지와 성곽마을을 통해 본 지속가능한 개발과 주거 -)

  • Kim, Young Soo
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.3
    • /
    • pp.240-255
    • /
    • 2016
  • In many cities in the East and West during the modern period, historical resources were perceived as obstacles to urban development and were treated as deficiencies calling for development. Korea underwent a process of drastic urbanization and industrialization almost unprecedented in modern history. In this process of turmoil, cities expanded rapidly and went through a series of changes. City development followed a repeated cycle in which resources were concentrated in the city area, which, in turn, led to further development. However, such method of development is reaching its limits. In order to make a city desirable for living, it is crucial to make an effort to build a sustainable city environment where life and history coexist harmoniously. It is now time to consider how to carry forth sustainable development in the city where the past, present, and future coexist. If so, how will the future of our cities look and the form of housing change? To answer this question, we examined Urban Hanok Residential Areas and Hanyangdoseong neighborhood village, which went through rapid changes in the modern period. The Hanok, which was a commonplace sight in the past, has been perceived as an underdeveloped form of housing, easily targeted for redevelopment only a few years ago; so was the case with Hanyangdoseong neighborhood village. Yet now these are being revalued as sustainable housing areas able to coexist with the history of the city. That is, through restoration, their potential of contributing to the history and identity of the city is gaining recognition. In this regard, it holds great implications for us to look at the changes that traditional Korean housing areas and castle villages have undergone.

Reinforcing Effects around Face of Soil-Tunnel by Crown & Face-Reinforcing - Large Scale Model Testing (천단 및 막장면 수평보강에 의한 토사터널 보강효과 - 실대형실험)

  • Kwon Oh-Yeob;Choi Yong-Ki;Woo Sang-Baik;Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.71-82
    • /
    • 2006
  • One of the most popular pre-reinforcement methods of tunnel heading in cohesionless soils would be the fore-polling of grouted pipes, known as RPUM (reinforced protective umbrella method) or UAM (umbrella arch method). This technique allows safe excavation even in poor ground conditions by creating longitudinal arch parallel to the tunnel axis as the tunnel advances. Some previous studies on the reinforcing effects have been performed using numerical methods and/or laboratory-based small scale model tests. The complexity of boundary conditions imposes difficulties in representing the tunnelling procedure in laboratory tests and theoretical approaches. Full-scale study to identify reinforcing effects of the tunnel heading has rarely been carried out so far. In this study, a large scale model testing for a tunnel in granular soils was performed. Reinforcing patterns considered are four cases, Non-Reinforced, Crown-Reinforced, Crown & Face-Reinforced, and Face-Reinforced. The behavior of ground and pipes as reinforcing member were fully measured as the surcharge pressure applied. The influences of reinforcing pattern, pipe length, and face reinforcement were investigated in terms of stress and displacement. It is revealed that only the Face-Reinforced has decreased sufficiently both vertical settlement in tunnel heading and horizontal displacement on the face. Vertical stresses along the tunnel axis were concentrated in tunnel heading from the test results, so the heading should be reinforced before tunnel advancing. Most of maximum axial forces and bending moments for Crown-reinforced were measured at 0.75D from the face. Also it should be recommended that the minimum length of the pipe is more than l.0D for crown reinforcement.

Behaviors of Soft Bangkok Clay behind Diaphragm Wall Under Unloading Compression Triaxial Test (삼축압축 하에서 지중연속벽 주변 방콕 연약 점토의 거동)

  • Le, Nghia Trong;Teparaksa, Wanchai;Mitachi, Toshiyuki;Kawaguchi, Takayuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2007
  • The simple linear elastic-perfectly plastic model with soil parameters $s_u,\;E_u$ and n of undrained condition is usually applied to predict the displacement of a constructed diaphragm wall(DW) on soft soils during excavation. However, the application of this soil model for finite element analysis could not interpret the continued increment of the lateral displacement of the DW for the large and deep excavation area both during the elapsed time without activity of excavation and after finishing excavation. To study the characteristic behaviors of soil behind the DW during the periods without excavation, a series of tests on soft Bangkok clay samples are simulated in the same manner as stress condition of soil elements happening behind diaphragm wall by triaxial tests. Three kinds of triaxial tests are carried out in this research: $K_0$ consolidated undrained compression($CK_0U_C$) and $K_0$ consolidated drained/undrained unloading compression with periodic decrement of horizontal pressure($CK_0DUC$ and $CK_0UUC$). The study shows that the shear strength of series $CK_0DUC$ tests is equal to the residual strength of $CK_0UC$ tests. The Young's modulus determined at each decrement step of the horizontal pressure of soil specimen on $CK_0DUC$ tests decreases with increase in the deviator stress. In addition, the slope of Critical State Line of both $CK_0UC$ and $CK_0DUC$ tests is equal. Moreover, the axial and radial strain rates of each decrement of horizontal pressure step of $CK_0DUC$ tests are established with the function of time, a slope of critical state line and a ratio of deviator and mean effective stress. This study shows that the results of the unloading compression triaxial tests can be used to predict the diaphragm wall deflection during excavation.

A Study on Social Justice and Common Good in Television Dramas - With a Focus on Works by Park Hye-ryeon (텔레비전드라마에 나타난 사회 정의와 공동선에 관한 연구 -박혜련 작가의 작품을 중심으로)

  • Park, Sang-Wan
    • Journal of Popular Narrative
    • /
    • v.25 no.2
    • /
    • pp.73-116
    • /
    • 2019
  • In recent years, television dramas have adopted an emerging approach of imagining a just society via fantasy. This study set out to examine by stages the patterns of social justice in I Hear Your Voice, Pinocchio, and While You Were Sleeping written by Park Hye-ryeon, who has been leading this trend. I Hear Your Voice shows why social justice is needed, as it is set against the backdrop of a society in which legal justice has collapsed. In this drama, the collapse of the legal justice system indicates that democratic society is falling apart at the roots. As a result, pain and suffering is propagated among the petit bourgeois, with social justice being demanded as an alternative to this problematic reality. The supernatural power of reading the thoughts of others is used to remind viewers of the value of truth and trust and raises the possibility of the existence of a true heart as an alternative from a social justice perspective. Set in a society in which media justice is distorted, Pinocchio makes an attempt at changing ideas about social justice. In this drama, the corrupt media justice covers up truth and becomes a parasite to power, creating victims that are falsely accused. In this situation, the Pinocchio Syndrome, which makes people hiccup when telling a lie, shows paradoxically that truth can be distorted, and ultimately destroys absoluteness that is not truth. Finally, While You Were Sleeping inherits the world views of the two previous dramas and proposes a type of social justice called 'common good' as an alternative. A completely unfair society is created when legal justice collapses and media justice is distorted. In this situation, the ability to see the future is an ability to imagine a world of possibilities. Altruistic choices based on trust in others help us to realize a positive future. Social justice as common good to enable solidarity among subjects in a way that transcends the limitations of time and space is proposed as an alternative to overcome the problem of an unfair society. Given the recent reality of South Korean society, this common good and these ways of life might literally seem like a fantasy. When social justice is represented by efforts and reconstruction processes to overcome the current social issues and make a better future, common good based on the understanding and sympathy of others can be an alternative to improve a reality that is problematic at its root. Ultimately, Park's three works explore the feasibility of a just society that is yet to come from the aspect of the common good.

A Study on Promoting Performing Art with Robot Actor : Focusing on EveR (로봇 배우를 활용한 공연예술 활성화 방안 연구 : '에버' 중심으로)

  • Lee, Yoo Sun;Kim, Dong Eon
    • (The) Research of the performance art and culture
    • /
    • no.22
    • /
    • pp.371-411
    • /
    • 2011
  • In the twenty first century of rapid cultural change performing art requires new mode of expression based on imaginative power and creativity as well as establishing its own identity. The modern technological environment support this with advanced technology and bring about the expansion of reason from new experience. The introduction of digital media on artistic expression in particular, expands the physical ability of human body which is the main subject of performing art. A virtual body from digital technology is freed from physical boundaries and goes over space and time. It also suggests the possibility of new mode of communication with audience. This study aims at examining the subject of performing art and its digitalized movement focusing on EveR, the world's first professional robot actor. The robot actor which came on stage according to the new expression medium, a digital body, stands in need not only of technological value but also of cultural and artistic application for expression in art. In this endeavor to meet the demand, this study examines the development process and function of 'EveR' the robot actor. Also it searches into the performance of Ever which replaced human being as well as the historical significance of the title:the world's first. To be more specific, there is a example research on two performances:a pansori play "EveR is simply stunning(2009)" and children's play "The Robot Princess and Seven Dwarfs(2009)." Through this example research, it is enabled to anticipate the influence of robot actors on performing arts and to search for the better way of them to evolve. Furthermore, it aims at finding ways to create high value through promoting robot actors to be familiar to the public as well as supporting them to become active cultural contents. The performance with robotic technology is one of the artistic experiment that may cause the change of the future of performing art by actualizing technological imagination together with human body and machinery. As a consequence, it is expected that the meeting of performing art and robotic technology gives positive influence on activating performing art as one of the integrated cultural phenomenon which satisfies the taste of modern era. Moreover, this study may also be the beginning of the expansion of performing art to stretch to diverse field.

A Study on Estimating Shear Strength of Continuum Rock Slope (연속체 암반비탈면의 강도정수 산정 연구)

  • Kim, Hyung-Min;Lee, Su-gon;Lee, Byok-Kyu;Woo, Jae-Gyung;Hur, Ik;Lee, Jun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.5-19
    • /
    • 2019
  • Considering the natural phenomenon in which steep slopes ($65^{\circ}{\sim}85^{\circ}$) consisting of rock mass remain stable for decades, slopes steeper than 1:0.5 (the standard of slope angle for blast rock) may be applied in geotechnical conditions which are similar to those above at the design and initial construction stages. In the process of analysing the stability of a good to fair continuum rock slope that can be designed as a steep slope, a general method of estimating rock mass strength properties from design practice perspective was required. Practical and genealized engineering methods of determining the properties of a rock mass are important for a good continuum rock slope that can be designed as a steep slope. The Genealized Hoek-Brown (H-B) failure criterion and GSI (Geological Strength Index), which were revised and supplemented by Hoek et al. (2002), were assessed as rock mass characterization systems fully taking into account the effects of discontinuities, and were widely utilized as a method for calculating equivalent Mohr-Coulomb shear strength (balancing the areas) according to stress changes. The concept of calculating equivalent M-C shear strength according to the change of confining stress range was proposed, and on a slope, the equivalent shear strength changes sensitively with changes in the maximum confining stress (${{\sigma}^{\prime}}_{3max}$ or normal stress), making it difficult to use it in practical design. In this study, the method of estimating the strength properties (an iso-angle division method) that can be applied universally within the maximum confining stress range for a good to fair continuum rock mass slope is proposed by applying the H-B failure criterion. In order to assess the validity and applicability of the proposed method of estimating the shear strength (A), the rock slope, which is a study object, was selected as the type of rock (igneous, metamorphic, sedimentary) on the steep slope near the existing working design site. It is compared and analyzed with the equivalent M-C shear strength (balancing the areas) proposed by Hoek. The equivalent M-C shear strength of the balancing the areas method and iso-angle division method was estimated using the RocLab program (geotechnical properties calculation software based on the H-B failure criterion (2002)) by using the basic data of the laboratory rock triaxial compression test at the existing working design site and the face mapping of discontinuities on the rock slope of study area. The calculated equivalent M-C shear strength of the balancing the areas method was interlinked to show very large or small cohesion and internal friction angles (generally, greater than $45^{\circ}$). The equivalent M-C shear strength of the iso-angle division is in-between the equivalent M-C shear properties of the balancing the areas, and the internal friction angles show a range of $30^{\circ}$ to $42^{\circ}$. We compared and analyzed the shear strength (A) of the iso-angle division method at the study area with the shear strength (B) of the existing working design site with similar or the same grade RMR each other. The application of the proposed iso-angle division method was indirectly evaluated through the results of the stability analysis (limit equilibrium analysis and finite element analysis) applied with these the strength properties. The difference between A and B of the shear strength is about 10%. LEM results (in wet condition) showed that Fs (A) = 14.08~58.22 (average 32.9) and Fs (B) = 18.39~60.04 (average 32.2), which were similar in accordance with the same rock types. As a result of FEM, displacement (A) = 0.13~0.65 mm (average 0.27 mm) and displacement (B) = 0.14~1.07 mm (average 0.37 mm). Using the GSI and Hoek-Brown failure criterion, the significant result could be identified in the application evaluation. Therefore, the strength properties of rock mass estimated by the iso-angle division method could be applied with practical shear strength.