• Title/Summary/Keyword: 시공간 패턴

Search Result 212, Processing Time 0.029 seconds

An Update Management Technique for Efficient Processing of Moving Objects (이동 객체의 효율적인 처리를 위한 갱신 관리 기법)

  • 최용진;민준기;정진완
    • Journal of KIISE:Databases
    • /
    • v.31 no.1
    • /
    • pp.39-47
    • /
    • 2004
  • Spatio-temporal databases have been mostly studied in the area of access methods. However, without considering an extraordinary update maintenance overhead after building up a spatio-temporal index, most indexing techniques have focused on fast query processing only. In this paper, we propose an efficient update management method that reduces the number of disk accesses required in order to apply the updates of moving objects to a spatio-temporal index. We consider realistic update patterns that can represent the movements of objects properly. We present a memory based structure that can efficiently maintain a small number of very frequently updating objects. For an experimental environment with realistic update patterns, the number of disk accesses of our method is about 40% lower than that of a general update method of existing spatio-temporal indexes.

Searching for Spatio-Temporal Pattern in EEG Signal with Hypernetwork (하이퍼네트워크를 이용한 EEG 신호의 시공간적 패턴 탐색)

  • Kim, Eun-Sol;Lee, Chung-Yeon;Lee, Ki-Seok Kevin;Lee, Hyun-Min;Kim, Joon-Shik;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.331-334
    • /
    • 2011
  • 입력 데이터의 공통적인 특징을 찾아내는 방법은 기계 학습 분야의 중요한 분야이다. 일반적으로 입력 데이터의 형태적 패턴을 찾아내는 알고리즘들이 많이 연구되었는데, 최근에는 데이터의 입력 순서 또는 데이터 사이의 시간적 인과 관계와 같이 시간에 연관된 패턴을 찾는 방법이 주목을 받고 있다. 우리는 형태적 혹은 공간적 패턴 탐색에 뛰어난 성능을 보이는 하이퍼네트워크 모델을 확장하여 입력 데이터의 시공간적 패턴을 찾는 방법을 제시한다. 하이퍼네트워크는 두 개 이상의 변수를 하나의 엣지로 연결하여 문제공간을 탐색하는 모델로, 시간과 공간의 변수를 동시에 고려하여 데이터의 특성을 찾아내는 데에 적합하다. 이를 확인하기 위하여 사람의 EEG 신호를 분석하였는데, 시각적인 정보를 처리할 때와 언어적 정보를 처리할 때의 특징적인 패턴들을 찾았다.

Optimal Moving Pattern Mining using Frequency of Sequence and Weights (시퀀스 빈발도와 가중치를 이용한 최적 이동 패턴 탐사)

  • Lee, Yon-Sik;Park, Sung-Sook
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.79-93
    • /
    • 2009
  • For developing the location based service which is individualized and specialized according to the characteristic of the users, the spatio-temporal pattern mining for extracting the meaningful and useful patterns among the various patterns of the mobile object on the spatio-temporal area is needed. Thus, in this paper, as the practical application toward the development of the location based service in which it is able to apply to the real life through the pattern mining from the huge historical data of mobile object, we are proposed STOMP(using Frequency of sequence and Weight) that is the new mining method for extracting the patterns with spatial and temporal constraint based on the problems of mining the optimal moving pattern which are defined in STOMP(F)[25]. Proposed method is the pattern mining method compositively using weighted value(weights) (a distance, the time, a cost, and etc) for our previous research(STOMP(F)[25]) that it uses only the pattern frequent occurrence. As to, it is the method determining the moving pattern in which the pattern frequent occurrence is above special threshold and the weight is most a little bit required among moving patterns of the object as the optimal path. And also, it can search the optimal path more accurate and faster than existing methods($A^*$, Dijkstra algorithm) or with only using pattern frequent occurrence due to less accesses to nodes by using the heuristic moving history.

  • PDF

A 3-Layered Framework for Spatiotemporal Knowledge Discovery (시공간 지식탐사를 위한 3계층 프레임워크)

  • 이준욱;남광우;류근호
    • Journal of KIISE:Databases
    • /
    • v.31 no.3
    • /
    • pp.205-218
    • /
    • 2004
  • As the development of database technology for managing spatiotemporal data, new types of spatiotemporal application services that need the spatiotemporal knowledge discovery from the large volume of spatiotemporal data are emerging. In this paper, a new 3-layered discovery framework for the development of spatiotemporal knowledge discovery techniques is proposed. The framework supports the foundation model in order not only to define spatiotemporal knowledge discovery problem but also to represent the definition of spatiotemporal knowledge and their relationships. Also the components of spatiotemporal knowledge discovery system and its implementation model are proposed. The discovery framework proposed in this paper satisfies the requirement of the development of new types of spatiotemporal knowledge discovery techniques. The proposed framework can support the representation model of each element and relationships between objects of the spatiotemporal data set, information and knowledge. Hence in designing of the new types of knowledge discovery such as spatiotemporal moving pattern, the proposed framework can not only formalize but also simplify the discovery problems.

Spatiotemporal Data Visualization using Gravity Model (중력 모델을 이용한 시공간 데이터의 시각화)

  • Kim, Seokyeon;Yeon, Hanbyul;Jang, Yun
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.135-142
    • /
    • 2016
  • Visual analysis of spatiotemporal data has focused on a variety of techniques for analyzing and exploring the data. The goal of these techniques is to explore the spatiotemporal data using time information, discover patterns in the data, and analyze spatiotemporal data. The overall trend flow patterns help users analyze geo-referenced temporal events. However, it is difficult to extract and visualize overall trend flow patterns using data that has no trajectory information for movements. In order to visualize overall trend flow patterns, in this paper, we estimate continuous distributions of discrete events over time using KDE, and we extract vector fields from the continuous distributions using the gravity model. We then apply our technique on twitter data to validate techniques.

A Spatiotemporal Parallel Processing Model for the MLP Neural Network (MLP 신경망을 위한 시공간 병렬처리모델)

  • Kim Sung-Oan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.95-102
    • /
    • 2005
  • A Parallel Processing model by considering a spatiotemporal parallelism is presented for the training procedure of the MLP neural network. We tried to design the flexible Parallel Processing model by simultaneously applying both of the training-set decomposition for a temporal parallelism and the network decomposition for a spatial parallelism. The analytical Performance evaluation model shows that when the problem size is extremely large, the speedup of each implementation depends, in the extreme, on whether the problem size is pattern-size intensive or pattern-quantify intensive.

  • PDF

Spatio-temporal Pattern Mining for Power Load Forecasting in GIS-AMR Load Analysis Model (GIS-AMR 부하 분석 모델에서의 전력 부하 예측을 위한 시공간 패턴 마이닝)

  • Lee, Heon Gyu;Piao, Minghao;Park, Jin Hyoung;Shin, Jin-ho;Ryu, Keun Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.3-6
    • /
    • 2009
  • 변압기 무선부하감시 시스템에서 30분 간격으로 계측된 부하 데이터와 GIS-AMR 데이터웨어하우스로부터 변압기 속성 및 공간적 특징을 추출하여 정확한 변압기의 부하 패턴을 예측하기 위한 시공간 패턴 마이닝 기법을 적용하였다.

Characterizing three-dimensional drought events and spatio-temporal migration patterns (3차원적 가뭄사상 특성 분석 및 시공간적 이동 패턴 분석)

  • Yoo, Jiyoung;Kim, Jang-Gyeong;Yoo, Do-Guen;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1025-1031
    • /
    • 2019
  • There are various research works on the spatio-temporal drought analysis because spatio-temporal behaviors of drought are essential for understanding the development and migration patterns of drought events. This study quantified three-dimensional drought events using the 6-month Standard Precipitation Index (SPI6). A total of 45 drought events were found during the analysis period, and the migration patterns of drought event in South Korea were analyzed using the centers of drought events. In South Korea, more droughts were migrated frequently in the north/south direction than in the east/west direction. In addition, droughts moving eastward have decreased since 2000, while droughts moving northward have been found to be longer. The results of spatio-temporal drought analysis may be highly utilized for understanding drought development and migration patterns.

원격상관패턴과 EEMD 분석을 통한 동아시아 가뭄예측성 평가

  • Park, Seo Yeon;Jung, Min Soo;Kim, Jong Suk;Lee, Joo Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.248-248
    • /
    • 2016
  • 본 연구에서는 동아시아 가뭄에 대한 발생원인과 예측가능성을 진단하기 위하여 대기순환패턴과의 상관성 분석을 실시하였으며, 원격상관 패턴에 의한 동아시아 가뭄의 시공간적 변화특성을 분석하였다. 또한 통계적 기법인 EEMD(Ensemble Empirical Mode Decomposition) 분석을 적용하여 원격상관패턴과 동아시아 가뭄의 예측가능성을 검토하였다. 본 연구는 동아시아 가뭄특성을 진단하고 가뭄예측기법의 개발을 통하여 현실적인 적응전략 수립에 유용하게 활용 될 것으로 기대된다.

  • PDF

Research on Application of Spatial Statistics for Exploring Spatio-Temporal Changes in Patterns of Commercial Landuse (상업적 토지이용 패턴의 시공간 변화 탐색을 위한 공간통계 기법 적용 연구)

  • Shin, Jung-Yeop;Lee, Gyoung-Ju
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.632-647
    • /
    • 2007
  • Lots of geographic phenomena have dynamic spatial patterns with time changes, and there have been lots of researches on exploring these dynamic spatial patterns. However, most of these researches focused on the static pattern analysis in a given period, rather than dealing with dynamic changes in the spatial pattern over time with the continual or cumulative perspective. For this reason, investigation of the inertia of spatial process in terms of temporal changes is needed. From this background, the purpose of this paper is to propose the methodology to explore the changes in spatial pattern cumulatively by considering the inertia of the spatial statistics over time, and to apply it to the case study That is, we introduce the new spatial statistic, and produce the z-values of the statistic using Monte Carlo Simulation, and then to explore the changes in spatial patterns over time cumulatively. To do this, the method to combine the J statistic with CUSUM statistic for exploring spatial patterns, and to apply it to the changes in the commercial landuse in Erie County, New York State. Through the proposed method for spatio-temporal Patterns, we could explore continual changes effectively in the spatial patterns reflecting the statistics by temporal spot cumulatively.