• Title/Summary/Keyword: 시공간 부호

Search Result 125, Processing Time 0.03 seconds

A Study on Turbo Equalization for MIMO Systems Based on LDPC Codes (MIMO 시스템에서 LDPC 부호 기반의 터보등화 방식 연구)

  • Baek, Chang-Uk;Jung, Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.504-511
    • /
    • 2016
  • In this paper, MIMO system based on turbo equalization techniques which LDPC codes were outer code and space time trellis codes (STTC) were employed as an inner code are studied. LDPC decoder and STTC decoder are connected through the interleaving and de-interleaving that updates each other's information repeatedly. In conventional turbo equalization of MIMO system, BCJR decoder which decodes STTC coded bits required two-bit wise decoding processing. Therefore duo-binary turbo codes are optimal for MIMO system combined with STTC codes. However a LDPC decoder requires bit unit processing, because LDPC codes can't be applied to these system. Therefore this paper proposed turbo equalization for MIMO system based on LDPC codes combined with STTC codes. By the simulation results, we confirmed performance of proposed turbo equalization model was improved about 0.6dB than that of conventional LDPC codes.

Closed-form Expression for the Symbol Error Probability of Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation (QAM 변조방식을 갖는 직교 시공간 블록 부호의 심볼 오율)

  • 김상효;강익선;노종선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.561-569
    • /
    • 2003
  • In this paper, for my linear orthogonal space-time block including the orthogonal space-time codes introduced by Alamouti[1], Tarokh[14], and Xia[11], the exact expression for the pairwise error probability in the slow Rayleigh fading channel is derived in terms of the message symbol distance between two message vectors rather than the codeword symbol distance between two transmitted codeword matrices. Using the one-dimensional component symbol error probability, the exact closed form expressions for the symbol error probability of linear orthogonal space-time codes are derived for QPSK, 16-QAM, 64-QAM, and 256-QAM.

Interference Alignment in 2-user X Channel System with Orthogonal and quasi-orthogonal Space-time Block Codes (직교 및 준직교 시공간 블록 부호를 통한 2-사용자 X 채널에서의 간섭정렬)

  • Mohaisen, Islam;Lee, Saet-byeol;Mohaisen, Manar;Elaydi, Hatem
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1785-1796
    • /
    • 2015
  • In this paper, we investigate achieving the full diversity order and power gains in case of using OSTBCs and quasi-OSBCs in the x channel system with interference alignment with more than 2 antennas at each terminal. A slight degradation is remarked in the case of quasi-OSTBCs. In terms of receiver structure, we show that due to the favorable structure of the channel matrices, the simple zero-forcing receiver achieves the full diversity order, while the interference cancellation receiver leads to degradations in performance. As compared to the conventional scheme, simulation results demonstrate that our proposed schemes achieve 14dB and 16.5dB of gain at a target bit error rate (BER) of 10-4 in the case of OSTBCs with 3 and 4 antennas at each terminal, respectively, while achieving the same spectral efficiency. Also, a gain of 10dB is achieved at the same target BER in the case of quasi-OSTBC with 4 antennas at each terminal.

Distributed Space-Time Coded Transmission for Mobile Satellite Communication Using Ancillary Terrestrial Component (ATC를 사용하는 이동위성통신을 위한 분산된 시공간 부호화 전송 방법)

  • Kim, Hui-Uk;Gang, Gun-Seok;An, Do-Seop
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.1
    • /
    • pp.27-34
    • /
    • 2007
  • A mobile satellite broadcasting service including an ancillary terrestrial component (ATC) takes advantage of the satellite's inherent capability to provide broadcast service over global coverage. We consider the downlink transmission concept using ATC with space=time code (STC) for the mobile satellite communication. We do not regard ATC as simply a repeater but consider it as an antenna for STC. First transmission scenarios for an application of STC are represented. Next, we apply STC in the mobile satellite system including ATC and compare the system performance in the proposed architecture of ATC to that in the conventional structure. The simulation results are compared to the conventional downlink transmission concept for the mobile satellite broadcasting service.

  • PDF

Design of Space-Time Trellis Code with Uniform Error Property (균일 오율의 시공간 격자상 부호 설계)

  • Jung Young-Seok;Lee Jae-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.59-68
    • /
    • 2006
  • The study on the uniform error property of codes has been restricted to additive white Gaussian noise (AWGN) channel, which is generally referred to as geometrical uniformity. In this paper, we extend the uniform error property to space-time codes in multiple-input multiple-output (MIMO) channel by directly treating the probability density functions fully describing the transmission channel and the receiver. Moreover, we provide the code construction procedure for the geometrically uniform space-time trellis codes in fast MIMO channels, which consider the distance spectrum. Due to the uniform error property, the complexity of code search is extensively reduced. Such reduction makes it possible to obtain the optimal space-time trellis codes with high order states. Simulation results show that new codes offer a better performance in fast MIMO channels than other known codes.

An Optimal Space Time Coding Algorithm with Zero Forcing Method in Underwater Channel (수중통신에서 Zero Forcing기법을 이용한 최적의 시공간 부호화 알고리즘)

  • Kwon, Hae-Chan;Park, Tae-Doo;Chun, Seung-Yong;Lee, Sang-Kook;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.349-356
    • /
    • 2014
  • In the underwater communication, the performance of system is reduced because of the inter-symbol interference occur by the multi-path. In the recent years, to deal with poor channel environment and improve the throughput, the efficient concatenated structure of equalization, channel codes and Space Time Codes has been studied as MIMO system in the underwater communication. Space Time Codes include Space Time Block Codes and Space Time Trellis Codes in underwater communication. Space Time Trellis Codes are optimum for equalization and channel codes among the Space Time Codes to apply in the MIMO environment. Therefore, in this paper, turbo pi codes are used for the outer code to efficiently transmit in the multi-path channel environment. The inner codes consist of Space Time Trellis Codes with transmission diversity and coding gain in the MIMO system. And Zero Forcing method is used to remove inter-symbol interference. Finally, the performance of this model is simulated in the underwater channel.

Performance Analysis and Efficient Decoding Algorithm for Space-Time Turbo codes (시공간 turbo 부호의 성능 분석과 효율적인 복호 알고리즘)

  • Shin Na na;Lee Chang woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.191-199
    • /
    • 2005
  • Space-time turbo codes have been studied extensively as a powerful and bandwidth efficient error correction code over the wireless communication environment. In this paper, the efficient algorithm for decoding space-time turbo codes is proposed. The proposed method reduces the computational complexity by approximating a prior information for a iterative decoder. The performance of space-time turbo codes is also analyzed by using the fixed point implementation and the efficient method for approximating the Log-MAP algorithm is proposed. It is shown that the BER performance of the proposed method is close to that of the Log-MAP algorithm.

8 Antenna Interleaved Quasi Orthogonal Space Time Block Code TBH with PIC Group Decoding (8 안테나 인터리브 시스템을 위한 준직교 시공간 블록 부호 TBH의 부분 간섭 제거 그룹 복호 알고리즘)

  • Lee, Moon-Ho;Lee, Mi-Sung;Hanif, Mohammad Abu;Park, Ju-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.8
    • /
    • pp.7-14
    • /
    • 2011
  • In this paper we studied a conventional system and propose a new decoding scheme for Space-time Frequency Code with Interleaved System. We also addressed the quasi orthogonal function with Jacket matrices in modern 3GPP LTE uplinked advance system. We also introduce the Partial Interference Cancellation (PIC) group decoding which provides a framework to adjust the complexity-performance tradeoff by choosing the sizes of the information symbols groups.

Performance Evaluation of Quasi-Orthogonal Space Time Block Codes with Combined Channel Coding (채널 부호기를 고려한 준직교 시공간 블럭 부호기의 성능 평가)

  • Heo, Seo-Weon;Yeo, Seung-Jun;Lee, Ho-Kyoung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.16-17
    • /
    • 2008
  • 본 논문은 다중 안테나 시스템에서 두 심볼을 묶어서 전송함으로써 최대 전송률을 유지하는 준직교 시공간 블록 부호(QOSTBC : quasi orthogonal space time block codes)의 성능을 평가하였다. 이제까지 제안된 여러 QOSTBC 부호는 다차원 신호 공간에서의 신호 설계 방식에 차이가 있고 결과적으로 diversity 차수는 동일하지만 부호 이득에 차이를 보인다. 채널 부호기를 결합한 경우와 그렇지 않은 경우에 여러 가지 방식의 QOSTBC의 성능을 모의실험으로 평가하였다.

  • PDF

Performance Analysis of Quasi-Orthogonal Space-Time Block Coded OFDM Systems (준직교 시공간 블록 부호화된 OFDM 시스템의 성능 분석)

  • Hwang, Kyu-Sang;Yi, Jong-Sik;Jong, Jae-Pil;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.10-18
    • /
    • 2004
  • As a technique for high-quality multimedia service in down-link, the transmit diversity schemes using a orthogonal space-time block codes were proposed. But if the number of transmit antenna is three or more, it was impossible to obtain full diversity gain because of the decline of spectral efficiency. Accordingly, the quasi-orthogonal space-time block code that not required a additional bandwidth was proposed. But using a space-time block codes, the transmit diversity schemes were verified over quasi-static and frequency non-selective channels. Therefore, in this paper, we analyze the performance of OFDM systems, which a frequency selective channel equalized a frequency non-selective channel, adapting the quasi-orthogonal space-time block code, and compare they to the conventional orthogonal space-time block coded OFDM systems.

  • PDF