• Title/Summary/Keyword: 시공간블록부호화

Search Result 55, Processing Time 0.022 seconds

An Optimized Double-ABBA Quasi-Orthogonal Space Time Code with PIC Group Decoding (PIC 그룹 복호화를 이용한 최적화된 Double-ABBA 유사 직교 시공간 부호)

  • Hanif, Mohammad Abu;Lee, Moon Ho;Park, Ju Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • In this paper we propose a system where we divide the group with 2 symbols. The two added symbols are separated by multiplexing and later added using the DE-multiplexing technique. In our proposed system a simple Partial Interference Cancelation (PIC) group decoding scheme is used for Double-ABBA(D-ABBA) Quasi-Orthogonal Space Time Code, which reduces the decoding complexity for the higher order Multiple Input Multiple Output (MIMO) space time block coding. Finally we compare the proposed scheme performance using the different modulation schemes.

Distributed Alamouti Space Time Block Coding Based On Cooperative Relay System (협동 중계 시스템을 이용한 분산 Alamouti 시공간 블록 부호)

  • Song, Wei;Cho, Kye-Mun;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.9
    • /
    • pp.16-23
    • /
    • 2009
  • In this paper, we propose a new distributed Alamouti space-time block coding scheme using cooperative relay system composed of one source node, three relay nodes and one destination node. The source node is assumed to be equipped with two antennas which respectively use a 2-beam array to communicate with two nodes selected from the three relay nodes. During the first time slot, the two signals which respectively were transmitted by one antenna at the source, are selected by one relay node, added, amplified, and forwarded to the destination. During the second time slot, the other two relay nodes implement the conjugate and minusconjugate operations to the two received signals, respectively, each in turn is amplified and forwarded to the destination node. This transmission scheme represents a new distributed Alamouti space-time block code that can be constructed at the relay-destination channel. Through an equivalent matrix expression of symbols, we analyze the performance of this proposed space-time block code in terms of the chernoff upper bound pairwise error probability (PEP). In addition, we evaluate the effect of the coefficient $\alpha$ ($0{\leq}{\alpha}{\leq}1$) determined by power allocation between the two antennas at the source on the received signal performance. Through computer simulation, we show that the received signals at the three relays have same variance only when the value of $\alpha$ is equal to $\frac{2}{3}$, as a consequence, a better performance is obtained at the destination. These analysis results show that the proposed scheme outperforms conventional proposed schemes in terms of diversity gain, PEP and the complexity of relay nodes.

H.264/AVC Fast Motion Estimation using Spatial and Temporal Correlation of Motion Vector (움직임 벡터의 시공간적 관계를 이용한 H.264/AVC 고속 움직임 예측 방법)

  • Moon, Ji-Hee;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.335-336
    • /
    • 2010
  • H.264/AVC 비디오 압축 표준은 압축 효율을 높이기 위해 다양한 크기의 블록을 사용하여 화면 사이의 움직임 예측을 수행한다. 세밀한 움직임 예측으로 인해 기존의 동영상 표준보다 압축 효율을 높일 수 있었지만, 복잡도도 증가하는 단점이 있다. 따라서, H.264/AVC의 고속 움직임 추정 기법은 필수적이다. H.264/AVC에서 사용하는 움직임 예측 방법은 고정된 탐색 영역 안에서 모든 정수 화소 단위로 최적의 움직임 벡터를 계산한다. 불필요한 정수 화소까지 움직임을 예측하므로 계산양이 증가한다. 본 논문에서는 움직임 벡터의 시간적 상관도와 공간적 상관도를 이용하여 가변적으로 탐색 영역의 크기를 조절하는 방법과 적응적인 초기 시작점 결정 방법을 제안했다. 현재 매크로블록과 참조 화면 사이의 거리를 고려하여 시간적 상관도와 공간적 상관도의 탐색 영역 비중을 가변적으로 조절했다. 또한 참조 화면과 현재 매크로블록 사이의 거리가 멀어질수록 초기 시작점의 정확도를 높이기 위해 초기 시작점을 예측 움직임 벡터와 이전 참조 화면에서 결정된 최적의 움직임 벡터의 평균으로 결정했다. 제안하는 방법은 기존의 전 영역 탐색 방법과 유사한 부호화 성능을 보이면서 움직임 예측 시간이 평균 53.98% 감소하는 것을 확인할 수 있다.

  • PDF

Performance of Tactics Mobile Communication System Based on UWB with Double Binary Turbo Code in Multi-User Interference Environments (다중 사용자 간섭이 존재하는 환경에서 이중이진 터보부호를 이용한 UWB 기반의 전술이동통신시스템 성능)

  • Kim, Eun-Cheol;Seo, Sung-Il;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.39-50
    • /
    • 2010
  • In this paper, we analyze and simulate the performance of a tactics mobile communication system based on ultra wide band (UWB) in multi-user interference (MUI) environments. This system adopts a double binary turbo code for forward error correction (FEC). Wireless channel is modeled a modified Saleh and Valenzuela (SV) model. We employ a space time block coding (STBC) scheme for enhancing system performance. System performance is evaluated in terms of bit error probability. From the simulation results, it is confirmed that the tactics mobile communication system based on UWB, which is encoded with the double binary turbo code, can achieve a remarkable coding gain with reasonable encoding and decoding complexity in multi-user interference environments. It is also known that the bit error probability performance of the tactics mobile communication system based on UWB can be substantially improved by increasing the number of iterations in the decoding process for a fixed cod rate. Besides, we can demonstrate that the double binary turbo coding scheme is very effective for increasing the number of simultaneous users for a given bit error probability requirement.

Space-Time Concatenated Convolutional and Differential Codes with Interference Suppression for DS-CDMA Systems (간섭 억제된 DS-CDMA 시스템에서의 시공간 직렬 연쇄 컨볼루션 차등 부호 기법)

  • Yang, Ha-Yeong;Sin, Min-Ho;Song, Hong-Yeop;Hong, Dae-Sik;Gang, Chang-Eon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • A space-time concatenated convolutional and differential coding scheme is employed in a multiuser direct-sequence code-division multiple-access(DS-CDMA) system. The system consists of single-user detectors (SUD), which are used to suppress multiple-access interference(MAI) with no requirement of other users' spreading codes, timing, or phase information. The space-time differential code, treated as a convolutional code of code rate 1 and memory 1, does not sacrifice the coding efficiency and has the least number of states. In addition, it brings a diversity gain through the space-time processing with a simple decoding process. The iterative process exchanges information between the differential decoder and the convolutional decoder. Numerical results show that this space-time concatenated coding scheme provides better performance and more flexibility than conventional convolutional codes in DS-CDMA systems, even in the sense of similar complexity Further study shows that the performance of this coding scheme applying to DS-CDMA systems with SUDs improves by increasing the processing gain or the number of taps of the interference suppression filter, and degrades for higher near-far interfering power or additional near-far interfering users.

BICM Applied to Improved SOSTBC (개선된 SOSTBC 적용된 BICM)

  • Park, Jong-Chul;Kim, Chang-Joong;Lee, Ho-Kyoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.34-39
    • /
    • 2008
  • In this paper, we propose a bit-interleaved coded modulation (BICM) a lied to improved super-orthogonal space-time block code(SOSTBC). The proposed system achieves a greater diversity gain than that of super-orthogonal space-time trellis code (SOSTTC) with similar decoding complexity. Since, using the improved SOSTBC, the bit diversity carl be full diversity of SOSTBC. In contrast, BICM applied to Jafarkhani's SOSTBC is difficult to achieve a greater diversity gain than that of SOSTTC, because every bit diversity of the system is 1.

Improvement Transmission Reliability between Flight Type Air Node Using Concatenated Single Antenna Diversity (비행형 에어노드의 데이터 전송 신뢰성 향상을 위한 연접 단일 안테나 다이버시티 시스템)

  • Kang, Chul-Gyu;Kim, Dae-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1053-1058
    • /
    • 2011
  • In this paper, we propose a concatenated single antenna diversity system to assure the data transmission reliability between flight type air nodes which move according to their atypical orbit, then analyze its performance. The proposed system achieve a diversity gain using single antenna and a coding gain from convolutional code simultaneously. Simulation result about the bit error rate(BER) of the proposed system shows that its BER performance is about 9.5dB greater than convolutional code at $10^{-4}$ and about 14dB greater than space time block code at $10^{-3}$ which has a full diversity gain. In addition, compared with space time trellis code with diversity gain and coding gain, the proposed system shows the better 4dB at a BER of $10^{-5}$. Therefore, it is necessary that concatenated single antenna diversity should be adopted to the reliable data transmission of flight type air nodes.

Co-channel Interference Mitigation using Orthogonal Transmission Scheme for Cooperative Communication System with Decode-and-Forward Relays (복조후 전송 중계기를 이용한 협력통신 시스템에서 직교 전송 개념을 이용한 동일 채널 간섭 완화)

  • Kim, Eun-Cheol;Seo, Sung-Il;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.34-41
    • /
    • 2010
  • In this paper, we analyze and simulate co-channel interference (CCI) mitigation method for cooperative communication systems employing decode-and-forward relays. In co-channel interference mitigation method, A source transmits signals that are encoded by orthogonal code. Then, the receiver can distinguish its own signals form the received signals by using the orthogonal code which is already known to the receiver. The orthogonal codes applied to this paper are orthogonal Gold codes. However, we can employ other codes, which have orthogonality, as the orthogonal code. In addition, we utilize a space time block coding (STBC) scheme for enhancing the system performance by obtaining additional array gain.

Design of MSSTC for MIMO Retransmissions (다중 안테나 재전송 환경을 위한 MSSTC 부호화 기법)

  • Ko, Dong-Ju;Lee, Jeong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.265-275
    • /
    • 2011
  • In this paper, we propose a Multi-Strata Space Time Code(MSSTC) for MIMO retransmissions. Since MSSTC is constructed by superimposing two OSTBC matrices, there are no intra-stratum interferences, but there exist inter-strata interferences. In MIMO retransmission environment, the transmitter switches adaptively the phases of strata at each transmission by using 1-bit feedback sent from the receiver in order to reduce the inter-strata interferences efficiently. We also propose a power allocation scheme between strata to improve error performance. Simulation results show that the proposed scheme achieves better performance than other conventional schemes.

An Efficient STBC Scheme for a Cooperative Satellite-Terrestrial System (위성과 지상 중계 장치와의 협동 다이버시티를 위한 효율적인 STBC 방식)

  • Park, Un-Hee;Li, Jing;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.997-1005
    • /
    • 2008
  • In this paper, we propose an efficient space-time block coding (STBC) scheme in a cooperative satellite-terrestrial system. The proposed STBC scheme has code rate 1 for a 3 transmit antenna scheme. Because the channel matrix of the proposed scheme is orthogonal, we can use a simple linear decoding algorithm and also can expect improved performance over the conventional scheme. The simulation results demonstrate that the proposed scheme has improved performance for bit error rates (BER) than several conventional STBC schemes. In addition, we investigate performance simulation results by power imbalance between the terrestrial repeaters and satellite.