• Title/Summary/Keyword: 시공간블록부호화

Search Result 55, Processing Time 0.025 seconds

Impact of Channel Variations and Channel Estimation Errors on the Error Performance of Convolutional Coded STBC Systems (길쌈 부호화 시공간 블록 부호 시스템의 오류 성능에 대한 채널 변화 및 채널 추정 오류의 영향)

  • Yun, Eunsik;Kim, Sun-Hyung;Park, Sangjoon;Kang, Byeong-Gwon
    • Journal of Digital Convergence
    • /
    • v.16 no.5
    • /
    • pp.231-237
    • /
    • 2018
  • This paper investigates the impact of the channel variations and channel estimation errors on the error performance of convolutional coded STBC systems. We consider the orthogonal Almouti STBC and the quasi-orthogonal Jafarkhani STBC, and the error performance of the convolutional coded STBC system is investigated according to the channel variation and channel estimation error via numerical simulations. Simulation results show that, if the channel variation speed is slow, time diversity effects improve the error performance compared to the static-channel cases. However, if the channel variation speed is fast, unlike ZF or MMSE detection, the conventional STBC detection has the significant performance degradation especially with the quasi-orthogonal Jafarkhani STBC. Further, the error performance of the system is significantly degraded as the channel estimation errors become stronger, regardless of the detection scheme and channel variation speed.

Performance of Space Time Block Coded-Spatial Multiplexing Systems in Limited Feedback Channel (제한된 귀환채널에서 시공간블록부호화를 적용한 다중화 시스템의 성능)

  • Hwang, Hyeon-Chyeol;Shin, Seung-Hoon;Lim, Jong-Kyoung;Kim, Seok-Ho;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.772-780
    • /
    • 2005
  • In this paper, an efficient pre-processing in space tine block coded-spatial multiplexing systems is presented. The pre-processing scheme is designed empirically with extending the diagonally weighted orthogonal space time-block coded diversity system to spatial multiplexing system. Simulation results show the proposed scheme outperforms both the precoder using the predefued codebooks and typical antenna selection scheme over moderate doppler frequency in limited feedback channel.

Distributed Video Coding with Reliability Estimation Based on Spatio-temporal Statistical Characteristics of Side Information (보조정보의 시공간 통계 특성에 기초한 신뢰도 예측에 의한 분산 비디오 부호화)

  • Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1694-1701
    • /
    • 2013
  • Distributed video coding technique(DVC) is needed for several applications with low bit rate or low encoding resources. However, since conventional DVC schemes have performance limitations and so as one of the several methods to overcome this problem and to improve the coding efficiency, DVC scheme with the moving information of side information has been developed. Based on this system, in this paper, an efficient reliability estimation is introduced to evaluate the blocks composing of side information and send these blocks location to the encoder side. Then, these enable the encoder to selectively encode and to improve the coding performance. Experimental results show that the proposed scheme performs better than the conventional coding scheme.

An Optimal Space Time Coding Algorithm with Zero Forcing Method in Underwater Channel (수중통신에서 Zero Forcing기법을 이용한 최적의 시공간 부호화 알고리즘)

  • Kwon, Hae-Chan;Park, Tae-Doo;Chun, Seung-Yong;Lee, Sang-Kook;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.349-356
    • /
    • 2014
  • In the underwater communication, the performance of system is reduced because of the inter-symbol interference occur by the multi-path. In the recent years, to deal with poor channel environment and improve the throughput, the efficient concatenated structure of equalization, channel codes and Space Time Codes has been studied as MIMO system in the underwater communication. Space Time Codes include Space Time Block Codes and Space Time Trellis Codes in underwater communication. Space Time Trellis Codes are optimum for equalization and channel codes among the Space Time Codes to apply in the MIMO environment. Therefore, in this paper, turbo pi codes are used for the outer code to efficiently transmit in the multi-path channel environment. The inner codes consist of Space Time Trellis Codes with transmission diversity and coding gain in the MIMO system. And Zero Forcing method is used to remove inter-symbol interference. Finally, the performance of this model is simulated in the underwater channel.

Performance Analysis of Quasi-Orthogonal Space-Time Block Coded OFDM Systems (준직교 시공간 블록 부호화된 OFDM 시스템의 성능 분석)

  • Hwang, Kyu-Sang;Yi, Jong-Sik;Jong, Jae-Pil;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.10-18
    • /
    • 2004
  • As a technique for high-quality multimedia service in down-link, the transmit diversity schemes using a orthogonal space-time block codes were proposed. But if the number of transmit antenna is three or more, it was impossible to obtain full diversity gain because of the decline of spectral efficiency. Accordingly, the quasi-orthogonal space-time block code that not required a additional bandwidth was proposed. But using a space-time block codes, the transmit diversity schemes were verified over quasi-static and frequency non-selective channels. Therefore, in this paper, we analyze the performance of OFDM systems, which a frequency selective channel equalized a frequency non-selective channel, adapting the quasi-orthogonal space-time block code, and compare they to the conventional orthogonal space-time block coded OFDM systems.

  • PDF

Scalable Stereoscopic Video Coding for Heterogeneous Environments (이질적인 환경을 위한 스케러블 스테레오 영상 부호화)

  • 오세찬;이영호;우운택
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.225-235
    • /
    • 2004
  • In this paper, we propose a new stereoscopic video coding approach for heterogeneous consumer devices by exploiting the concept of spatio-temporal scalability. The proposed method uses MPEG-2 standard for coding the left or main sequence and an enhanced compatible coding scheme for predicting the P- and B-type of frames of the right or auxiliary sequence. The enhanced compatible coding scheme predicts matching block by interpolating both two forward and backward motion predicted macroblocks and disparity predicted macroblock. To provide flexible stereo video service, we define both a temporally scalable layer and a spatially scalable layer for each eye-view. The experimental results show the efficiency of proposed coding scheme by comparison with already known methods and the advantages of disparity estimation in terms of scalability overhead. According to the experimental results, we expect the proposed functionalities will play a key role in establishing highly flexible stereo video service for ubiquitous computing environment where devices and network connections are heterogeneous.

Soft Decision Detection Method for Turbo-coded STBC Using High-order Modulation Schemes (고차원 변조 방식에서의 터보 부호화된 시공간 블록 부호 기술을 위한 최적의 연판정 검출 방법)

  • Kim, Young-Min;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.562-571
    • /
    • 2010
  • Forward error correction (FEC) coding schemes using iterative soft decision detection (SDD) information are mandatory in most of the next generation wireless communication system, in order to combat inevitable channel imparirnents. At the same time, space-time block coding (STBC) schemes are used for the diversity gain. Therefore, SDD information has to be fed into FEC decoder. In this paper, we propose efficient SDD methods for turbo-coded STBC system using high order modulation such as QAM. We present simulation results of various SDD schemes for turbo-coded STBC systems, and show that the proposed methods can provide almost approximating performance to maximum likelihood detection with much less computational load.

An Adaptive Detection Scheme of Differential Space-Time Block Codes for Mobiles Operating with Various Speeds in LTE Downlink Scenario (LTE 하향링크에서 단말의 이동 속도에 따른 적응적 차등 시공간블록부호 복호화 기법)

  • Kim, Deuckyu;Hwang, Jae-Gyun;Kim, Byoung-Gil;Choi, Byoung-Jo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.611-614
    • /
    • 2012
  • Space-Time Block Code (STBC) is a simple transmit diversity scheme mitigating detrimental effects of fading channel. However, STBC receivers require channel knowledge and suffer from inaccurate channel estimation. Differential Space-Time Modulation (DSTM) renders the receiver a choice of coherent detection or non-coherent detection, depending on the availability of the channel information. Based on the simulated BER performances of these two schemes over various normalized Doppler frequency scenarios using LTE-like parameters, a benefit of adaptively switching the receiver type is investigated.

  • PDF

High Data Rate Ultra Wideband Space Time Coded OFDM (고속 전송률 UWB 시공간 부호화 OFDM)

  • Lee Kwang-Jae;Chen Hsiao-Hwa;Lee Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.132-142
    • /
    • 2006
  • In this paper, we present a candidate high data rate space time coded OFDM system for short range personal networking. The system transmits the complex space time coded signals with a hybrid orthogonal frequency division multiplexing (OFDM) based on ultra wideband (UWB) pulses. The transmitted signals are sparse pulse trains modulated by a frequency selected from a properly designed set of frequencies. Additionally, a widely linear (WL) receive filter and a space time frequency transmission are designed by using two simple parallel linear detectors. To overcome the deeply fade in the propagation system, a beamforming combined with space time block codes also 따 e briefly discussed.

Performance of OFDM using Beam-switching and Space-Time coding in Wireless Personal Area Network (무선 개인 영역망 환경에서 빔 스위칭과 시공간부호를 적용한 OFDM 전송방식의 성능)

  • Yoon, Seok-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.85-92
    • /
    • 2010
  • In this paper, we consider the orthogonal frequency division multiplexing (OFDM) based transmission incoorperating with beam-switching and space-time coding. Specifically, we consider three configurations; (1) the beamforming technique, (2) the spatial diversity technique and (3) their combination and evaluate the performance in wireless personal area network (WPAN) environment. For the beam-forming technique, we consider the beam-switching which is performed at RF front-end with a pre-defined set of beams and for the space-time coding, we consider the Alamauti scheme with antenna selection. For the combined scheme, we divide the antennas used into two group to generate two independent beams and apply the two-antenna Alamauti scheme over the two beams. For these three configurations, performance is evaluated in terms of the SNR gain.