Selectivity estimation techniques in query optimization have been used in commercial databases and histograms are popularly used for the selectivity estimation. Recently, the techniques for spatio-temporal databases have been restricted to existing temporal and spatial databases. In addition, the selectivity estimation techniques focused on time-series data such as moving objects. It is also impossible to estimate selectivity for range queries with a time interval. Therefore, we construct two histograms, CMH (current multidimensional histogram) and PMH (past multidimensional histogram), to estimate the selectivity of multidimensional sequence data in spatio-temporal databases and propose effective selectivity estimation methods using the histograms. Furthermore, we solve a problem about the range query using our proposed histograms. We evaluated the effectiveness of histograms for range queries with a time interval through various experimental results.
Various techniques including histograms, sampling and parametric techniques have been proposed to estimate query result sizes for the query optimization. Histogram-based techniques are the most widely used form for the selectivity estimation in relational database systems. However, in the spatio-temporal databases for the moving objects, the continual changes of the data distribution suffer the direct utilization of the state of the art histogram techniques. Specifically for the future queries, we need another methodology that considers the updated information and keeps the accuracy of the result. In this paper we propose a novel approach based upon the duality and the marginal distribution to construct a histogram with very little time since the spatio-temporal histogram requires the data distribution defined by query predicates. We use data synopsis method in the dual space to construct spatio-temporal histograms. Our method is robust to changing data distributions during a certain period of time while the objects keep the linear movements. An additional feature of our approach supports the dynamic update incrementally and maintains the accuracy of the estimated result.
Recently there is a need to store and process enormous spatial data in spatio-temporal databases. For effective query processing in spatio-temporal databases, selectivity estimation in query optimization techniques, which approximate query results when the precise answer is not necessary or early feedback is helpful, has been studied. There have been selectivity estimation techniques such as sampling-based techniques, histogram-based techniques, and wavelet-based techniques. However, existing techniques in spatio-temporal databases focused on selectivity estimation for future extent of moving objects. In this paper, we construct a new histogram, named T-Minskew, for query optimization of past spatio-temporal data. We also propose an effective selectivity estimation method using T-Minskew histogram and effective histogram maintenance technique to prevent frequent histogram reconstruction using threshold.
Chi Jeong Hee;Shin Hyun Ho;Kim Sang Ho;Ryu Keun Ho
Journal of KIISE:Databases
/
v.32
no.1
/
pp.43-55
/
2005
Spatiotemporal databases support methods of recording and querying for spatiotemporal data to user by offering both spatial management and historical information on various types of objects in the real world. We can answer to the following query in real world: 'What is the average of volume of pesticide sprayed for cach farm land from April to August on 2001, within some query window' Such aggregation queries have both temporal and spatial constraint. However, previous works for aggregation are attached only to temporal aggregation or spatial aggregation. So they have problems that are difficult to apply for spatiotemporal data directly which have both spatial and temporal constraint. Therefore, in this paper, we propose spatiotemporal aggregate functions for analysis of spatiotemporal data which have spatiotemporal characteristic, such as stCOUNT, stSUM, stAVG, stMAX, stMIN. We also show that our proposal resulted in the convenience and improvement of query in application systems, and facility of analysis on spatiotemporal data which the previous temporal or spatial aggregate functions are not able to analyze, by applying to the estate management system. Then, we show the validity of our algorithm performance through the evaluation of spatiotemporal aggregate functions.
As the development of database technology for managing spatiotemporal data, new types of spatiotemporal application services that need the spatiotemporal knowledge discovery from the large volume of spatiotemporal data are emerging. In this paper, a new 3-layered discovery framework for the development of spatiotemporal knowledge discovery techniques is proposed. The framework supports the foundation model in order not only to define spatiotemporal knowledge discovery problem but also to represent the definition of spatiotemporal knowledge and their relationships. Also the components of spatiotemporal knowledge discovery system and its implementation model are proposed. The discovery framework proposed in this paper satisfies the requirement of the development of new types of spatiotemporal knowledge discovery techniques. The proposed framework can support the representation model of each element and relationships between objects of the spatiotemporal data set, information and knowledge. Hence in designing of the new types of knowledge discovery such as spatiotemporal moving pattern, the proposed framework can not only formalize but also simplify the discovery problems.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.85-87
/
2003
최근 들어 이동통신 환경의 급격한 발달로 이를 활용한 위치기반 서비스에 대한 관심이 높아지고 있다. 효율적인 위치기반 서비스를 위해서는 실시간으로 위치를 변화시키는 이동객체에 대한 저장. 관리 및 질의를 담당할 수 있는 시공간 데이타베이스 관리 시스템의 존재가 필수적이다. 본 논문은 클러스터 기반 분산 컴퓨팅 구조를 바탕으로 제안된 시공간 데이타베이스 관리 시스템인 GALIS 구조 중에서 이동객체의 과거 위치 데이타를 디스크를 기반으로 저장 및 관리하는 노드인 LDP와 이동객체 데이터 생성기를 TMO 프로그래밍 스킴과 상용 데이타베이스 엔진을 사용하여 구현하였다. 제안 시스템은 대용량 이동객체의 효율적인 관리를 위한 실시간 엔진 개발에 활용될 수 있다.
시공간 데이타베이스는 현실세계의 객체에 대하여 효율적인 공간 관리와 이력 관리를 지원한다. 이러한 시공간 데이타베이스는 시간차원과 공간차원이라는 이질적 데이타 공간을 관리하여야 하는 대단히 복잡한 시스템이다. 따라서 데이타에 대한 효율적 접근 방법에 대한 연구가 필수적이며, 이는 효율적 색인 기법의 개발을 통하여 이룰 수 있다. 그러나 시공간 데이타에 대한 접근방법 연구는 거의 이루어지지 않고 있으며 극소수의 사례들마저도 공간 객체의 이력 개념을 지원하는 것이 아니라 멀티미디어 객체의 상대적 시간만을 지원하고 있다. 따라서 이 논문에서는 공간 데이타의 이력을 표현하는 시공간 데이타에 대하여 효율적으로 색인하기 위한 방안으로서 시간과 공간을 단일화된 색인 영역으로 통합하는 단일화된 시공간 색인 모델을 제시하고, 이를 기존의 R-트리를 기반으로 확장한 색인을 설계 및 구현하였으며, 아울러 다양한 유형의 시공간 연산에 대한 색인의 성능을 평가하였다.Abstract Spatiotemporal databases are able to support an efficient spatial management as well as historical management for an object in the real world. It is very complex to manage these two dimensions why there exists on difference of inborn property of temporal and spatial dimensions. Therefore an efficient access method should be studied, and it can be done by means of development of efficient indexing technology.However, there is a few related work in the research of access methods of spatiotemporal data. Also the previous works do not support the concept of history for spatial object, and only support the relative time among multimedia objects. Therefore, in this paper, we propose a unified Spatiotemporal index model as an efficient index for Spatiotemporal data. And we not only design Spatiotemporal index that has been extended to historical management facility on the basis of conventional R-tree, but also implement it. Finally we have evaluated performance of index for the various kinds of Spatiotemporal operations.
A spatio-temporal join is an expensive operation that is commonly used in spatio-temporal database systems. In order to generate an efficient query plan for the queries involving spatio-temporal join operations, it is crucial to estimate accurate selectivity for the join operations. Given two dataset $S_1,\;S_2$ of discrete data and a timestamp $t_q$, a spatio-temporal join retrieves all pairs of objects that are intersected each other at $t_q$. The selectivity of the join operation equals the number of retrieved pairs divided by the cardinality of the Cartesian product $S_1{\times}S_2$. In this paper, we propose aspatio-temporal histogram to estimate selectivity of spatio-temporal join by extending existing geometric histogram. By using a wide spectrum of both uniform dataset and skewed dataset, it is shown that our proposed method, called Spatio-Temporal Histogram, can accurately estimate the selectivity of spatio-temporal join. Our contributions can be summarized as follows: First, the selectivity estimation of spatio-temporal join for discrete data has been first attempted. Second, we propose an efficient maintenance method that reconstructs histograms using compression of spatial statistical information during the lifespan of discrete data.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.764-766
/
2003
시공간 데이타베이스에서 저장대상이 되는 이동객체는 실시간으로 위치가 변화하는 동적인 데이타이다. 동일한 객체의 위치정보가 여러 데이타베이스 서버에 분산 저장 될 수 있으며, 질의 역시 여러 서버에 걸쳐서 분산질의 형태로 수행될 필요성이 있다. 이를 위해서 본 논문에서는 실시간 객체 모델인 TMO(Time-triggered Message-triggered Object)를 이용하여 이동 객체를 발생시키고 객체의 위치를 저장, 질의하는 시스템을 설계 및 구현하였다. TMO를 이용한 분산 저장을 통해 입력 시 발생할 수 있는 오버헤드를 줄이고. 데이타베이스간에 완전 연결 네트워크가 형성되어 각 데이타베이스 서버간의 상호 작용을 최소화 할 수 있게 된다. 이 시스템은 실시간으로 분산 위치정보를 관리해야 하는 여러 응용 분야에서 효과적으로 활용될 수 있다.
Park, Ji-Woong;Kim, Dong-Oh;Hong, Dong-Suk;Han, Ki-Joon
Journal of Korea Spatial Information System Society
/
v.8
no.2
s.17
/
pp.39-52
/
2006
With the recent the use of spatio-temporal data mining which can extract various knowledge such as movement patterns of moving objects in history data of moving object gets increasing. However, the existing movement pattern extraction methods create lots of candidate movement patterns when the minimum support is low. Therefore, in this paper, we suggest the STMPE(Spatio-Temporal Movement Pattern Extraction) algorithm in order to efficiently extract movement patterns of moving objects from the large capacity of spatio-temporal data. The STMPE algorithm generalizes spatio-temporal and minimizes the use of memory. Because it produces and keeps short-term movement patterns, the frequency of database scan can be minimized. The STMPE algorithm shows more excellent performance than other movement pattern extraction algorithms with time information when the minimum support decreases, the number of moving objects increases, and the number of time division increases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.