• Title/Summary/Keyword: 시공간데이타베이스

Search Result 44, Processing Time 0.021 seconds

Selectivity Estimation for Multidimensional Sequence Data in Spatio-Temporal Databases (시공간 데이타베이스에서 다차원 시퀀스 데이타의 선택도추정)

  • Shin, Byoung-Cheol;Lee, Jong-Yun
    • Journal of KIISE:Databases
    • /
    • v.34 no.1
    • /
    • pp.84-97
    • /
    • 2007
  • Selectivity estimation techniques in query optimization have been used in commercial databases and histograms are popularly used for the selectivity estimation. Recently, the techniques for spatio-temporal databases have been restricted to existing temporal and spatial databases. In addition, the selectivity estimation techniques focused on time-series data such as moving objects. It is also impossible to estimate selectivity for range queries with a time interval. Therefore, we construct two histograms, CMH (current multidimensional histogram) and PMH (past multidimensional histogram), to estimate the selectivity of multidimensional sequence data in spatio-temporal databases and propose effective selectivity estimation methods using the histograms. Furthermore, we solve a problem about the range query using our proposed histograms. We evaluated the effectiveness of histograms for range queries with a time interval through various experimental results.

Entropy-based Dynamic Histogram for Spatio-temporal Databases (시공간 데이타베이스의 엔트로피 기반 동적 히스토그램)

  • 박현규;손진현;김명호
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.176-183
    • /
    • 2003
  • Various techniques including histograms, sampling and parametric techniques have been proposed to estimate query result sizes for the query optimization. Histogram-based techniques are the most widely used form for the selectivity estimation in relational database systems. However, in the spatio-temporal databases for the moving objects, the continual changes of the data distribution suffer the direct utilization of the state of the art histogram techniques. Specifically for the future queries, we need another methodology that considers the updated information and keeps the accuracy of the result. In this paper we propose a novel approach based upon the duality and the marginal distribution to construct a histogram with very little time since the spatio-temporal histogram requires the data distribution defined by query predicates. We use data synopsis method in the dual space to construct spatio-temporal histograms. Our method is robust to changing data distributions during a certain period of time while the objects keep the linear movements. An additional feature of our approach supports the dynamic update incrementally and maintains the accuracy of the estimated result.

Selectivity Estimation for Timestamp Queries (시점 질의를 위한 선택율 추정)

  • Shin, Byoung-Cheol;Lee, Jong-Yun
    • Journal of KIISE:Databases
    • /
    • v.33 no.2
    • /
    • pp.214-223
    • /
    • 2006
  • Recently there is a need to store and process enormous spatial data in spatio-temporal databases. For effective query processing in spatio-temporal databases, selectivity estimation in query optimization techniques, which approximate query results when the precise answer is not necessary or early feedback is helpful, has been studied. There have been selectivity estimation techniques such as sampling-based techniques, histogram-based techniques, and wavelet-based techniques. However, existing techniques in spatio-temporal databases focused on selectivity estimation for future extent of moving objects. In this paper, we construct a new histogram, named T-Minskew, for query optimization of past spatio-temporal data. We also propose an effective selectivity estimation method using T-Minskew histogram and effective histogram maintenance technique to prevent frequent histogram reconstruction using threshold.

Extension of Aggregate Functions for Spatiotemporal Data Analysis (데이타 분석을 위한 시공간 집계 함수의 확장)

  • Chi Jeong Hee;Shin Hyun Ho;Kim Sang Ho;Ryu Keun Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.1
    • /
    • pp.43-55
    • /
    • 2005
  • Spatiotemporal databases support methods of recording and querying for spatiotemporal data to user by offering both spatial management and historical information on various types of objects in the real world. We can answer to the following query in real world: 'What is the average of volume of pesticide sprayed for cach farm land from April to August on 2001, within some query window' Such aggregation queries have both temporal and spatial constraint. However, previous works for aggregation are attached only to temporal aggregation or spatial aggregation. So they have problems that are difficult to apply for spatiotemporal data directly which have both spatial and temporal constraint. Therefore, in this paper, we propose spatiotemporal aggregate functions for analysis of spatiotemporal data which have spatiotemporal characteristic, such as stCOUNT, stSUM, stAVG, stMAX, stMIN. We also show that our proposal resulted in the convenience and improvement of query in application systems, and facility of analysis on spatiotemporal data which the previous temporal or spatial aggregate functions are not able to analyze, by applying to the estate management system. Then, we show the validity of our algorithm performance through the evaluation of spatiotemporal aggregate functions.

A 3-Layered Framework for Spatiotemporal Knowledge Discovery (시공간 지식탐사를 위한 3계층 프레임워크)

  • 이준욱;남광우;류근호
    • Journal of KIISE:Databases
    • /
    • v.31 no.3
    • /
    • pp.205-218
    • /
    • 2004
  • As the development of database technology for managing spatiotemporal data, new types of spatiotemporal application services that need the spatiotemporal knowledge discovery from the large volume of spatiotemporal data are emerging. In this paper, a new 3-layered discovery framework for the development of spatiotemporal knowledge discovery techniques is proposed. The framework supports the foundation model in order not only to define spatiotemporal knowledge discovery problem but also to represent the definition of spatiotemporal knowledge and their relationships. Also the components of spatiotemporal knowledge discovery system and its implementation model are proposed. The discovery framework proposed in this paper satisfies the requirement of the development of new types of spatiotemporal knowledge discovery techniques. The proposed framework can support the representation model of each element and relationships between objects of the spatiotemporal data set, information and knowledge. Hence in designing of the new types of knowledge discovery such as spatiotemporal moving pattern, the proposed framework can not only formalize but also simplify the discovery problems.

Design and Implementation of Disk-based Location Information Manager of GALIS (GALIS의 디스크 기반 위치 정보 관리기의 설계 및 구현)

  • 고영균;나연묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.85-87
    • /
    • 2003
  • 최근 들어 이동통신 환경의 급격한 발달로 이를 활용한 위치기반 서비스에 대한 관심이 높아지고 있다. 효율적인 위치기반 서비스를 위해서는 실시간으로 위치를 변화시키는 이동객체에 대한 저장. 관리 및 질의를 담당할 수 있는 시공간 데이타베이스 관리 시스템의 존재가 필수적이다. 본 논문은 클러스터 기반 분산 컴퓨팅 구조를 바탕으로 제안된 시공간 데이타베이스 관리 시스템인 GALIS 구조 중에서 이동객체의 과거 위치 데이타를 디스크를 기반으로 저장 및 관리하는 노드인 LDP와 이동객체 데이터 생성기를 TMO 프로그래밍 스킴과 상용 데이타베이스 엔진을 사용하여 구현하였다. 제안 시스템은 대용량 이동객체의 효율적인 관리를 위한 실시간 엔진 개발에 활용될 수 있다.

  • PDF

An Efficient Spatiotemporal Index Unifying Temporal and Spatial Dimensions (시간과 공간의 단일화를 통한 효율적 시공간 색인)

  • Sin, Ye-Ho;Kim, Dong-Ho;Ryu, Geun-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.9
    • /
    • pp.1039-1051
    • /
    • 1999
  • 시공간 데이타베이스는 현실세계의 객체에 대하여 효율적인 공간 관리와 이력 관리를 지원한다. 이러한 시공간 데이타베이스는 시간차원과 공간차원이라는 이질적 데이타 공간을 관리하여야 하는 대단히 복잡한 시스템이다. 따라서 데이타에 대한 효율적 접근 방법에 대한 연구가 필수적이며, 이는 효율적 색인 기법의 개발을 통하여 이룰 수 있다. 그러나 시공간 데이타에 대한 접근방법 연구는 거의 이루어지지 않고 있으며 극소수의 사례들마저도 공간 객체의 이력 개념을 지원하는 것이 아니라 멀티미디어 객체의 상대적 시간만을 지원하고 있다. 따라서 이 논문에서는 공간 데이타의 이력을 표현하는 시공간 데이타에 대하여 효율적으로 색인하기 위한 방안으로서 시간과 공간을 단일화된 색인 영역으로 통합하는 단일화된 시공간 색인 모델을 제시하고, 이를 기존의 R-트리를 기반으로 확장한 색인을 설계 및 구현하였으며, 아울러 다양한 유형의 시공간 연산에 대한 색인의 성능을 평가하였다.Abstract Spatiotemporal databases are able to support an efficient spatial management as well as historical management for an object in the real world. It is very complex to manage these two dimensions why there exists on difference of inborn property of temporal and spatial dimensions. Therefore an efficient access method should be studied, and it can be done by means of development of efficient indexing technology.However, there is a few related work in the research of access methods of spatiotemporal data. Also the previous works do not support the concept of history for spatial object, and only support the relative time among multimedia objects. Therefore, in this paper, we propose a unified Spatiotemporal index model as an efficient index for Spatiotemporal data. And we not only design Spatiotemporal index that has been extended to historical management facility on the basis of conventional R-tree, but also implement it. Finally we have evaluated performance of index for the various kinds of Spatiotemporal operations.

Selectivity Estimation for Spatio-Temporal a Overlap Join (시공간 겹침 조인 연산을 위한 선택도 추정 기법)

  • Lee, Myoung-Sul;Lee, Jong-Yun
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.54-66
    • /
    • 2008
  • A spatio-temporal join is an expensive operation that is commonly used in spatio-temporal database systems. In order to generate an efficient query plan for the queries involving spatio-temporal join operations, it is crucial to estimate accurate selectivity for the join operations. Given two dataset $S_1,\;S_2$ of discrete data and a timestamp $t_q$, a spatio-temporal join retrieves all pairs of objects that are intersected each other at $t_q$. The selectivity of the join operation equals the number of retrieved pairs divided by the cardinality of the Cartesian product $S_1{\times}S_2$. In this paper, we propose aspatio-temporal histogram to estimate selectivity of spatio-temporal join by extending existing geometric histogram. By using a wide spectrum of both uniform dataset and skewed dataset, it is shown that our proposed method, called Spatio-Temporal Histogram, can accurately estimate the selectivity of spatio-temporal join. Our contributions can be summarized as follows: First, the selectivity estimation of spatio-temporal join for discrete data has been first attempted. Second, we propose an efficient maintenance method that reconstructs histograms using compression of spatial statistical information during the lifespan of discrete data.

A Design and Implementation of TMO-based Distributed Moving Object Datatbase (TMO 기반 분산 이동 객체 데이타베이스의 설계 및 구현)

  • 이준우;전세길;나연묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.764-766
    • /
    • 2003
  • 시공간 데이타베이스에서 저장대상이 되는 이동객체는 실시간으로 위치가 변화하는 동적인 데이타이다. 동일한 객체의 위치정보가 여러 데이타베이스 서버에 분산 저장 될 수 있으며, 질의 역시 여러 서버에 걸쳐서 분산질의 형태로 수행될 필요성이 있다. 이를 위해서 본 논문에서는 실시간 객체 모델인 TMO(Time-triggered Message-triggered Object)를 이용하여 이동 객체를 발생시키고 객체의 위치를 저장, 질의하는 시스템을 설계 및 구현하였다. TMO를 이용한 분산 저장을 통해 입력 시 발생할 수 있는 오버헤드를 줄이고. 데이타베이스간에 완전 연결 네트워크가 형성되어 각 데이타베이스 서버간의 상호 작용을 최소화 할 수 있게 된다. 이 시스템은 실시간으로 분산 위치정보를 관리해야 하는 여러 응용 분야에서 효과적으로 활용될 수 있다.

  • PDF

An Efficient Algorithm for Spatio-Temporal Moving Pattern Extraction (시공간 이동 패턴 추출을 위한 효율적인 알고리즘)

  • Park, Ji-Woong;Kim, Dong-Oh;Hong, Dong-Suk;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.2 s.17
    • /
    • pp.39-52
    • /
    • 2006
  • With the recent the use of spatio-temporal data mining which can extract various knowledge such as movement patterns of moving objects in history data of moving object gets increasing. However, the existing movement pattern extraction methods create lots of candidate movement patterns when the minimum support is low. Therefore, in this paper, we suggest the STMPE(Spatio-Temporal Movement Pattern Extraction) algorithm in order to efficiently extract movement patterns of moving objects from the large capacity of spatio-temporal data. The STMPE algorithm generalizes spatio-temporal and minimizes the use of memory. Because it produces and keeps short-term movement patterns, the frequency of database scan can be minimized. The STMPE algorithm shows more excellent performance than other movement pattern extraction algorithms with time information when the minimum support decreases, the number of moving objects increases, and the number of time division increases.

  • PDF