• Title/Summary/Keyword: 시계열 특성

Search Result 820, Processing Time 0.037 seconds

Prospects for Extreme Drought Frequency Changes in the Future Using the Modified SPI Index (수정SPI지수를 이용한 미래 극한 가뭄빈도변화 전망)

  • Jeung, Se Jin;Choo, Kyung Su;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.38-38
    • /
    • 2020
  • SPI지수는 강수량이 감소하기 시작하면 필요한 물수요에 비해서 상대적으로 물부족을 유발하게 되고, 가뭄발생의 발단이 된다는 것에 착안하여 개발된 지수이다. 하지만 다른 가뭄지수와 마찬가지로 강수량 또는 유출량 시계열을 상대적인 표준정규분포로 산정하였기 때문에 인근 지역에 비해 상대적으로 강수량이 많은 지역도 실제로 발생하지 않은 가뭄이 발생한다고 분석이 된다. 이러한 현상을 완화시키기 위해 수정된 가뭄분석 기법이 요구된다. 이에 Jeung et. al(2019)은 이런 현상을 완화시키기 위해 SPI지수 계산과정에서 해당지점의 시계열을 대상으로 계산되는 Gamma 분포를 전국으로 확장 시켜 산정 후 표준정규분포에 적용하여 가뭄지수를 산정하였다. 또한 과거 제한급수가 발생했던 지역을 대상으로 극한가뭄과 가뭄지속기간을 이용하여 M-SPI지수의 효용성을 확인한 결과, 제한급수 실시년도와 SPI, M-SPI 결과와의 비교결과 과거 가뭄을 정확하게 모사하는 것을 확인하였다. 하지만 M-SPI는 전국을 하나의 지역으로 가정하여 산정하였고, 증발산량과, 고도 등 지형의 특성을 고려하지 않았기 때문에 일부의 가뭄사상을 재현하지 못하였다. 이에 본 연구에서는 기상학적 인자와, 지형학적 인자를 고려하여 지역화를 하고, 각 지역별로 대표 확률분포를 산정하여 가뭄지수를 산정하고자 한다. 또한 한국 기상청에서 제공하고 있는 국가 표준기후변화 시나리오를 수집하여 M-SPI에 적용하여 미래 극한 가뭄빈도의 변화를 전망하고자 한다.

  • PDF

STL-Attention based Traffic Prediction with Seasonality Embedding (계절성 임베딩을 고려한 STL-Attention 기반 트래픽 예측)

  • Yeom, Sungwoong;Choi, Chulwoong;Kolekar, Shivani Sanjay;Kim, Kyungbaek
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.95-98
    • /
    • 2021
  • 최근 비정상적인 네트워크 활동 감지 및 네트워크 서비스 프로비저닝과 같은 다양한 분야에서 응용되는 네트워크 트래픽 예측 기술이 네트워크 통신 문제에 의한 트래픽의 결측 및 네트워크 유저의 불규칙한 활동에 의한 비선형 특성 때문에 발생하는 성능 저하를 극복하기 위해 딥러닝 신경망에 대한 연구가 활성화되고 있다. 이 딥러닝 신경망 중 시계열 딥러닝 신경망은 단기 네트워크 트래픽 볼륨을 예측할 때 낮은 오류율을 보인다. 하지만, 시계열 딥러닝 신경망은 기울기 소멸 및 폭발과 같은 비선형성, 다중 계절성 및 장기적 의존성 문제와 같은 한계를 보여준다. 이 논문에서는 계절성 임베딩을 고려한 주의 신경망 기반 트래픽 예측 기법을 제안한다. 제안하는 기법은 STL 분해 기법을 통해 분해된 트래픽 트랜드, 계절성, 잔차를 이용하여 일별 및 주별 계절성을 임베딩하고 이를 주의 신경망을 기반으로 향후 트래픽을 예측한다.

Simulation of continuous snow accumulation data using stochastic method (추계론적 방법을 통한 연속 적설 자료 모의)

  • Park, Jeongha;Kim, Dongkyun;Lee, Jeonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.60-60
    • /
    • 2022
  • 본 연구에서는 적설 추정 알고리즘과 추계 일기 생성 모형을 활용하여 관측 적설의 특성을 재현하는 연속 적설심 자료 모의 방법을 소개한다. 적설 추정 알고리즘은 강수 유형 판단, Snow Ratio 추정, 그리고 적설 깊이 감소량 추정까지 총 3단계로 구성된다. 먼저 강수 발생시 지상기온과 상대습도를 지표로 활용하여 강수 유형을 판단하고, 강수가 적설로 판별되었을 때 강수량을 신적설심으로 환산하는 Snow Ratio를 추정한다. Snow Ratio는 지상 기온과의 sigmoid 함수 회귀분석을 통해 추정하였으며, precipitation rate 조건(5 mm/3hr 미만 및 이상)에 따라 두 가지 함수를 적용하였다. 마지막으로 적설 깊이 감소량은 온도 지표 snowmelt 식을 이용하여 추정하였으며, 매개변수는 적설 깊이 및 온도 관측 자료를 활용하여 보정하였다. 속초 관측소 자료를 활용하여 매개변수를 보정 및 검증하여 높은 NSE(보정기간 : 0.8671, 검증기간 : 0.7432)를 달성하였으며, 이 알고리즘을 추계 일기 생성 모형으로 모의한 합성 기상 자료(강수량, 지상기온, 습도)에 적용하여 합성 적설심 시계열을 모의하였다. 모의 자료는 관측 자료의 통계 및 극한값을 매우 정확하게 재현하였으며, 현행 건축구조기준과도 일치하는 것으로 나타났다. 이 모형을 통하여 적설 위험 분석 분야뿐 아니라 기후 전망 자료와의 결합, 미계측 지역에 대한 자료 모의 등에도 광범위하게 활용될 수 있을 것이다.

  • PDF

Estimation of storm events frequency analysis using copula function (Copula 함수를 이용한 호우사상의 빈도해석 산정)

  • An, Heejin;Lee, Moonyoung;Kim, Si Yeon;Jeon, Seol;Ahn, Youngmin;Jung, Donghwa;Park, Daeryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.200-200
    • /
    • 2022
  • 본 연구에서는 총 강우량과 강우강도을 고려한 이변수 분석으로 연최대 호우사상을 선별하고, 두 변수를 Copula 함수로 결합하여 최적의 모델조합을 찾는 확률호우사상 산정 방법론을 제시하였다. 국내 69개 관측소의 2020년까지의 관측 자료를 대상으로 1mm 이하의 강우는 제거한 뒤, IETD(Inter-Event Time Definition) 12시간을 기준으로 강우자료를 독립적인 호우사상으로 분리하였다. 호우사상의 여러 특성 중 양의 상관관계를 갖는 총 강우량과 강우강도를 변수로 선택해 이변수 지수분포에 대입하였고, 각 지점의 연최대 호우사상 시계열을 생성하였다. 2변수 지수분포의 매개변수는 전체 기간과 연도별로 나누어 추정해 본 결과 연도별 변동성이 큰 것을 확인해 연도별 추정 방식을 선택하였다. 연최대 강우사상 시계열의 총 강우량과 강우강도는 극한 강우에 적용하는 확률분포형 중 Lognarmal, Gamma, Gumbel, GEV(Generalized Extreme Value), GPD(Generalized Pareto Distribution) 5가지를 사용하여 각각 CDF(Cumulative distribution Function) 값을 추정하였다. 계산된 CDF 값은 3가지 Copula 모형으로 결합해 joint CDF 값을 산출하였다. 총 75개의 모델조합 중 최적 모델을 찾기 위해 CVM(Cramer-von-Mises) 적합도 검정을 시행하였다. CVM의 통계량 Sn 값이 가장 작은 모델조합을 해당 지점의 최적 모델조합으로 선정하였다.

  • PDF

Evaluation of Agricultural Drought Prevention Ability Based on EOF Analysis and Multi-variate Time Series Model (EOF 해석 및 다변량시계열 모형을 이용한 농업가뭄 대비능력의 평가)

  • Yoo Chul-Sang;Kim Dae-Ha;Kim Sang-Dan
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.617-626
    • /
    • 2006
  • In this study 3-month SPI data from 59 stations over the Korean peninsula are analyzed by deriving and spatially characterizing the EOFs. Also, the coefficient time series of EOF are applied to the multi-variate time series model to generate the time series of 10,000 years, to average them to estimate the areal average, and to decide the maximum drought severity for given return periods. Finally, the drought prevention ability is evaluated by considering the effective storage of dam within the basin and the size of agricultural area. Especially for the return period of 30 years, only the Han river basin has the potential to overcome the drought. Other river basins like the Youngsan river basin, which has a large portion of agricultural area but less water storage, are found to be very vulnerable to the rainfall-sensitive agricultural drought.

Selection of mother wavelet for bivariate wavelet analysis (이변량 웨이블릿 분석을 위한 모 웨이블릿 선정)

  • Lee, Jinwook;Lee, Hyunwook;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.905-916
    • /
    • 2019
  • This study explores the effect of mother wavelet in the bivariate wavelet analysis. A total of four mother wavelets (Bump, Mexican hat, Morlet, and Paul) which are frequently used in the related studies is selected. These mother wavelets are applied to several bivariate time series like white noise and sine curves with different periods, whose results are then compared and evaluated. Additionally, two real time series such as the arctic oscillation index (AOI) and the southern oscillation index (SOI) are analyzed to check if the results in the analysis of generated time series are consistent with those in the analysis of real time series. The results are summarized as follows. First, the Bump and Morlet mother wavelets are found to provide well-matched results with the theoretical predictions. On the other hand, the Mexican hat and Paul mother wavelets show rather short-periodic and long-periodic fluctuations, respectively. Second, the Mexican hat and Paul mother wavelets show rather high scale intervention, but rather small in the application of the Bump and Morlet mother wavelets. The so-called co-movement can be well detected in the application of Morlet and Paul mother wavelets. Especially, the Morlet mother wavelet clearly shows this characteristic. Based on these findings, it can be concluded that the Morlet mother wavelet can be a soft option in the bivariate wavelet analysis. Finally, the bivariate wavelet analysis of AOI and SOI data shows that their periodic components of about 2-4 years co-move regularly every about 20 years.

Time Series Patterns and Clustering of Rotifer Community in Relation with Topographical Characteristics in Lentic Ecosystems (정수생태계의 지형적인 요인 변화와 윤충류 출현 종 수 및 개체군 밀도 변동에 대한 연구)

  • Oh, Hye-Ji;Heo, Yu-Ji;Chang, Kwang-Hyeon;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.390-397
    • /
    • 2021
  • The time series data of rotifer community focusing on the species number and total density were collected from 29 reservoirs located at Jeonnam Province from 2008 to 2016 quarterly. The reservoirs had similar weather condition during the study period, but their sizes and water qualities were different. To analyze the temporal dynamics of rotifer community, the medians, ranges, outliers and coefficient of variation (CV) value of rotifer species number and abundance were compared. For the temporal trend analysis, time series of each reservoir data were compared and clustered using the dynamic time warping function of the R package "dtwclust". Small-sized reservoirs showed higher variability in rotifer abundance with more frequent outliers than large-sized reservoirs. On the other hand, apparent pattern was not observed for the rotifer species number. For the temporal pattern of rotifer density, COD, phytoplankton abundance fluctuation, and cladoceran abundance fluctuation have been suggested as potential factor affecting the rotifer abundance dynamics.

An analysis of regional photovoltaic using GIS in the Korean Peninsula (GIS를 이용한 한반도의 지역별 태양광 자원 분석)

  • Jeon, Sanghee;Choi, Youngjean;Jee, Joonbum
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.58.2-58.2
    • /
    • 2011
  • 국립기상연구소는 2000년부터 2010년까지(11년)의 위성자료와 수치모델의 재분석 자료를 이용하여 한반도영역에 대해서 $4km{\times}4km$ 해상도의 태양-기상자원지도를 계산하였다. 이러한 태양-기상자원지도를 기반으로 GIS 분석도구를 이용하여 지역별 태양에너지의 분포와 지역별 태양광의 기후특성을 분석하였다. 연구영역의 행정구역을 구분하고 각 지역별 에너지분포 및 변화특성을 쉽게 분석하기 위하여 GIS 분석도구를 사용하였다. 평균 연누적 태양에너지 자료를 분석한 결과 한반도에서는 경상도가 가장 풍부한 태양광에너지를 받고 있었으며 특히 대구광역시(5047MJ), 부산광역시(5019.4MJ)가 높게 나타났다. 북한지역에서는 함경남도(4719.1MJ)가 가장 풍부한 자원을 가지고 있는 것으로 나타났다. 월별 분포를 분석한 결과 대체로 연누적과 동일하게 남부지방의 경상도가 높은 태양광 에너지를 나타났다. 특히 7월 등의 여름철은 1월에 비해 절대적으로 에너지양이 많았다. 그러나 위도 38도를 중심으로 빈번한 장마전선을 동반한 구름의 이동으로 중부지방이 남부지방과 북부지방에 비해 낮게 나타났다. 또한 2000년 1월부터 2010년 12월까지 월별 시계열 변화를 분석해본 결과 한반도 전역에서 태양광의 증가추세가 나타났다. 특히 부산광역시는 10년간 3.75MJ이 증가하였으며, 서울특별시는 3.645MJ/decade, 함경북도는 3.499MJ/decade의 증가경향을 보였다. 월별 시계열 그래프를 보면 2003년 8월과 2005년 4월을 기준으로 3부분에서 다른 특성이 나타나는데 이것은 각 구간별로 구름산출을 위하여 사용된 정지기상위성이 다르기 때문이다. 각 구간에서 사용된 위성은 GMS-5(2003년 8월 이전), GOES-9(2003년 8월~2005년 3월) 그리고 MTSAT-1R(2005년 4월이후)이다. 추후에는 태양광 자원이 풍부한 지역에 대해서 더욱 상세하게 태양광 에너지의 분포와 변화를 분석해보자 한다. 이러한 지역별 자원분석 자료는 지방자치단체들이 신재생에너지 개발계획을 세우는데 도움을 줄 수 있을 것이다.

  • PDF

The Climatological Characteristics of Monthly Precipitation over Han- and Nakdong-river Basins: Part I. Variability of Area Averaged Time Series (한강과 낙동강 유역평균 월강수량의 기후 특성: I. 유역평균 시계열의 변동)

  • Baek, Hee-Jeong;Kwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.111-119
    • /
    • 2005
  • The climatological characteristics of the area averaged monthly precipitation over the Han- and Nakdong-river basins were investigated. The data used for this study is monthly precipitation data from 51 meteorological stations for the period of 1954 to 2002. The magnitude of area averaged precipitation in the Han-river basin was about 10% larger than that in the Nakdong-river basin. However, the variability of two monthly precipitation time series exhibited similar characteristics: April precipitation tends to decrease and August precipitation increase significantly, while there was no significant trend for the other months. There were some indications of abrupt change around the 1970's in the periodicity of precipitation and relationship with El Nino index. September precipitation showed negative correlation with NINO3 index but November precipitation, positive correlation with NINO3 index, indicating a possible connection with the global-scale phenomena.

Automatic Change Detection of MODIS NDVI using Artificial Neural Networks (신경망을 이용한 MODIS NDVI의 자동화 변화탐지 기법)

  • Jung, Myung-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.83-89
    • /
    • 2012
  • Natural Vegetation cover, which is very important earth resource, has been significantly altered by humans in some manner. Since this has currently resulted in a significant effect on global climate, various studies on vegetation environment including forest have been performed and the results are utilized in policy decision making. Remotely sensed data can detect, identify and map vegetation cover change based on the analysis of spectral characteristics and thus are vigorously utilized for monitoring vegetation resources. Among various vegetation indices extracted from spectral reponses of remotely sensed data, NDVI is the most popular index which provides a measure of how much photosynthetically active vegetation is present in the scene. In this study, for change detection in vegetation cover, a Multi-layer Perceptron Network (MLPN) as a nonparametric approach has been designed and applied to MODIS/Aqua vegetation indices 16-day L3 global 250m SIN Grid(v005) (MYD13Q1) data. The feature vector for change detection is constructed with the direct NDVI diffenrence at a pixel as well as the differences in some subset of NDVI series data. The research covered 5 years (2006-20110) over Korean peninsular.