• 제목/요약/키워드: 시계열 특성

검색결과 820건 처리시간 0.03초

금강하구의 대표 모니터링 지표와 지점에 관한 연구 (A study on the representative monitoring properties and locations in the Geumgang Estuary)

  • 김남훈;황진환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.23-23
    • /
    • 2020
  • 하구 관측은 조사 방법 및 주기에 따라 크게 두 가지로 구분되는데, 첫째는 현장에서 직접 주기적으로 자료를 수집하는 정기 현장관측과 다른 하나는 고정된 지점에 관측소를 설치하여 실시간으로 연속된 자료를 수집하는 실시간 관측으로 분류된다. 본 연구는 하구 관측망 체계를 확립하기 위한 기초 연구로서 금강하구역을 대상으로 모의된 수치 모델 자료를 이용하여 관측망을 설계하기 위한 대표 모니터링 지표를 선정하고, 이를 기반으로 관측 지점을 설계하기 위한 전략을 제시하였다. 대표 모니터링 지표는 실제 현장에서 일반적으로 취득할 수 있는 6가지 항목(수온, 염분, 용존산소, 클로로필a, 총질소, 총인)을 대상으로 EOF 분석을 실시하여 해역의 시공간 분포를 대표할 수 있다고 판단되는 2개의 항목을 선정하였다. 대표 모니터링 지점은 2개의 대표 모니터링 지표에 대한 고유 벡터 사이의 각도를 벡터의 내적으로 계산하고 이를 설계변수로 활용하여 도식최적화 기법을 통해 각 모니터링 항목들에 대한 공간 분포를 가장 잘 재현해 낼 수 있는 지점의 개수와 위치를 선정하였다. 선정된 모니터링 지점들을 이용하여 재구성된 공간 분포를 참값(수치모델)과 비교하여 통계적 적정성 여부를 평가하였으며, 이를 통해 금강하구의 대표 모니터링 지점들을 도출 해 내었다. 금강하구의 정기 현장 관측에 대한 대표 모니터링 지점은 7개로 선정되었으며, 이들은 6가지 관측 항목들에 대해서 매우 높은 공간분포 재현율을 확보할 수 있음을 확인하였다. 또한, 담수가 비정기적으로 방류되는 금강하구 시스템의 지역적 특성에 대한 시계열 정보를 연속적으로 가장 잘 취득할 수 있는 실시간 관측소 설치 영역을 결정하기 위하여, 7개의 대표 모니터링 지점에서의 시계열 정보를 금강하구둑 전면과 외해의 시계열 정보와 비교분석하여 설치가능 지점을 영역으로 제언하였다.

  • PDF

이변량 Copula 모형을 활용한 다목적댐 유입량 가뭄빈도해석 (Drought frequency analysis for multi-purpose dam inflow using bivariate Copula model)

  • 성지영;김은지;강부식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.340-340
    • /
    • 2021
  • 가뭄의 특성상 시점과 종점을 명확하게 정의하기 어렵기 때문에 기준수문량을 설정하고 부족량과 지속기간을 정의하는 것이 일반적이다. 대상 수문량은 강우나 유출량을 사용할 수 있지만, 두 성분간 지체와 감쇄효과로 인하여 빈도해석의 결과는 차이를 보일 수 밖에 없어, 사용 목적에 따라 선별적으로 적용해야 한다. 가뭄빈도해석은 강우를 기반으로 지속기간과 심도를 정의하여 빈도를 해석하는 연구가 선행되어왔지만, 기본적으로 강우의 간헐적 발생특성과 체감도의 한계가 문제로 지적되고 있다. 본 연구에서는 댐 유입량의 Run 시계열 특성을 이용하여 다양한 유황을 기준유량으로 활용하여 가뭄의 시점과 종점에 대한 가뭄사상을 추출하고 지속기간과 누적부족량을 계산하여 가뭄빈도해석의 변수로 설정하였다. 두 변수간의 복잡한 상호 관계를 해석하기 위해 Copula 함수를 이용한 이변량 가뭄빈도해석을 진행하였다. 먼저 소양강댐('74-'19) 유입량, 충주댐('86-'19) 유입량을 연구대상지역으로 설정하여, 두 유역의 유입량의 추세분석을 통해 시간의존성을 파악하였다. 유황분석에 사용되는 분위량중 평수량을 기준값으로 사용하여 각 년별 최대 지속기간과 누적부족량을 추출하였다. Copula 가뭄빈도해석을 수행하기 전에 지속기간에는 GEV, 누적 부족량에는 Log-normal 분포를 적용해 단변량 누적확률분포를 계산하여 재현기간을 도출하였다. 이변량 빈도해석에 Clayton Copula 함수를 적용하여 가뭄빈도해석을 진행하였고, Copula 이변량 재현기간과 SDF곡선을 도출하였다. Clayton Copula를 이용한 이변량 가뭄빈도해석의 결과로 소양강댐의 가장 극심한 가뭄은 1996년으로 단변량 재현기간은 지속기간 기준 9.11년, 누적부족량 기준 17.26년, Copula 재현기간은 141.19년 이며 충주댐의 가장 극심한 가뭄은 2014년으로 단변량 재현기간은 지속기간 기준 17.76년, 누적부족량 기준 18.72년, Copula 재현기간은 184.19년으로 단변량 가뭄빈도해석을 통한 재현기간보다 Copula 재현기간이 높은 결과가 도출되었다. Run 시계열을 바탕으로 한 기준유량의 임계값 기준 Event 산정과 Copula를 이용한 빈도해석은 가뭄분석에 이용되는 자료의 상관관계와 분포특성을 재현하는데 효과적인 특징이 있다. 이를 미루어 보아 Copula 함수를 이용한 가뭄빈도해석의 재현기간은 보다 현실적인 재현기간을 도출할 수 있는 것으로 판단된다. 임계값의 조정을 통해 가뭄빈도해석의 변수의 양이 늘어나면, 보다 정확도 높은 재현기간을 도출하여 수문학적 가뭄을 정의할 수 있을 것이라고 사료된다.

  • PDF

급수수요량의 계절별 예측모델에 관한 연구 (Seasonal Prediction Model for Urban Water Demand)

  • 구자용
    • 수도
    • /
    • 제23권6호통권81호
    • /
    • pp.36-46
    • /
    • 1996
  • 급수 수요량의 단기예측은 상수도 시스템의 유지관리 계획 수립의 중요한 구성 요소이며, 대상지역의 특성을 민감하게 반영하고 있으므로, 급수수요의 지역 특성과 관련된 수요 구조의 파악이 무엇보다 중요한 과제라 할 수 있다. 따라서 본 논문에서는 상수도 시스템의 합리적 배수 제어 획을 실시하기 위한 기초적 정보인 급수량 변동 구조에 대해 통계적인 분석을 실시하였다. 특히 일단위의 급수량에 초점을 두어 급수량의 시계열 특성과 급수량 영향 요인 분석을 통하여 대상 지역의 정상 시계열장과 급수량에 영향을 미치는 요인을 분석하였다. 또한 급수량의 계절별 단기 수요 예측 모델을 제안하기 위하여 통계적 예측 수법으로 평가 받고 있는 MARIMA (Multiple Auto Regressive Integrated Moving Average) 모델을 급수량 단기 수요 예측에 적용하여 계절별 급수 수요량을 예측하였다.

  • PDF

이동평균법과 교차상관계수를 이용한 제주도 표선유역 중산간지역의 강수량과 지하수위 간의 지체시간 추정 (Estimation of delay time between precipitation and groundwater level in the middle mountain area of Pyoseon watershed in Jeju Island using moving average method and cross correlation coefficient)

  • 신문주;문수형;고기원;문덕철
    • 한국수자원학회논문집
    • /
    • 제53권7호
    • /
    • pp.533-543
    • /
    • 2020
  • 지하수자원의 적절한 관리를 위한 정보제공을 위해서는 강수량과 지하수위 시계열자료 간의 지체시간 계산을 통한 지하수위 상승시기 추정 및 지하수위 변동특성 파악이 필요하다. 본 연구에서는 제주도 남동쪽 표선유역 중산간지역에 위치한 9개 지하수위 관측정 지점을 대상으로 선행강수를 고려하기 위해 이동평균법을 활용하여 생성한 이동평균 강수량 시계열자료와 지하수위 시계열자료 간의 일단위 총 지체시간 및 교차상관계수를 계산하고 추정결과를 비교분석 하였다. 분석결과 이동평균 강수량 시계열자료를 사용시 원시 강수량 시계열자료를 사용한 경우보다 모든 관측정에서 지하수위 시계열자료와의 상관성이 증가함으로써 보다 명확한 강수량-지하수위 지체시간 추정이 가능하였다. 이동평균 강수량 시계열자료 사용시 지하수위 시계열자료와 최대 0.57~0.58까지의 교차상관계수를 보였으며 평균적으로 약 24일의 선행강수를 고려할 경우 상대적으로 높은 상관성을 보였다. 총 지체시간은 평균적으로 약 32일 이었으며 이동평균 강수일이 총 지체시간 계산에 큰 영향을 미침으로써 선행강수의 고려가 총 지체시간 추정시 중요한 역할을 하는 것을 확인하였다. 또한 이동 평균 강수량 시계열자료 사용을 통해 원시 강수량 시계열자료 사용에 의한 총 지체시간 추정오류를 발견하였다. 본 연구에서 사용한 총 지체시간 추정방법과 본 논문의 부록에 제시된 총 지체시간 추정용 R 코드의 활용을 통해 향후 다른 지역에 대한 총 지체시간을 비교적 쉽게 추정할 수 있을 것으로 판단된다.

경험적 모드분해법을 이용한 기상인자와 우리나라 강수 및 기온의 상관관계 분석 : I. 자료의 분해 및 특성 분석 (Correlation analysis between climate indices and Korean precipitation and temperature using empirical mode decomposition : I. Data decomposition and characteristic analysis)

  • 안시권;최원영;김태림;허준행
    • 한국수자원학회논문집
    • /
    • 제49권3호
    • /
    • pp.197-205
    • /
    • 2016
  • 최근 기후변화로 인한 자연재해가 증가하면서 강수 및 기온자료의 시계열에 대한 변동성과 추세를 분석하여 그 변화를 예측하는 연구의 필요성이 점점 커지고 있다. 하지만 강수나 기온의 경우 복합적인 요소에 의해 변동이 일어나 자료의 변동성이 매우 심하고 너무 많은 요소를 포함하게 되어 그 특성을 정확히 판단하기가 쉽지 않다. 따라서 자료의 시계열을 분해하게 되면 각 특성을 가진 요소를 추출할 수 있으므로, 정확한 변동 특성을 파악할 수 있다. 본 연구에서는 우리나라 강수 및 기온자료를 경험적 모드분해법(Empirical Mode Decomposition, EMD)을 통해 주기별로 분해하여 각각의 내재모드함수(Intrinsic Mode Function, IMF)를 추출하였다. 또한, 추출된 내재모드함수의 에너지 밀도를 이용한 유의성 검정을 통해 원자료로부터 유의미한 자료를 포함하고 있는 내재모드함수를 선별하고, 이들의 주기성, 경향성을 분석하였다.

Causal temporal convolutional neural network를 이용한 변동성 지수 예측 (Forecasting volatility index by temporal convolutional neural network)

  • 신지원;신동완
    • 응용통계연구
    • /
    • 제36권2호
    • /
    • pp.129-139
    • /
    • 2023
  • 변동성의 예측은 자산의 리스크에 대비하는 데에 중요한 역할을 하기때문에 필수적이다. 인공지능을 통하여 이러한 복잡한 특성을 지닌 변동성 예측을 시도하였는데 기존 시계열 예측에 적합하다 알려진 LSTM (1997)과 GRU (2014)은 기울기 소실로 인한 문제, 방대한 연산량의 문제, 그로 인한 메모리양의 문제 등이 존재하였다. 변동성 데이터는 비정상성(non-stationarity)과 정상성(stationarity)을 모두 가지고 있는 특성이 있으며, 자산 가격 하방 쇼크에 더 큰 폭으로 상승하는 비대칭성과 상당한 장기 기억성, 시장에 큰 사건이 발생할 때 기존의 값들에 비해 이상치라 할 수 있을 정도의 예측할 수 없는 큰 값이 발생하는 특성들이 존재한다. 이렇게 여러 가지 복잡한 특성들은 하나의 모형으로 구조화되기 어려워서 전통적인 방식의 모형으로는 변동성에 대한 예측력을 높이기 어려운 면이 있다. 이러한 문제를 해결하기 위해 1D CNN의 발전된 형태인 causal TCN (causal temporal convolutional network) 모형을 변동성 예측에 적용하고, 예측력을 최대화 할 수 있는 TCN 구조를 설계하고자 하였다. S&P 500, DJIA, Nasdaq 지수에 해당하는 변동성 지수 VIX, VXD, and VXN, 에 대하여 예측력 비교를 하였으며, TCN 모형이 RNN 계열의 모형보다도 전반적으로 예측력이 높음을 확인하였다.

시-공간 그래프 모델을 이용한 자전거 대여 예측 (Prediction for Bicycle Demand using Spatial-Temporal Graph Models)

  • 박장우
    • 사물인터넷융복합논문지
    • /
    • 제9권6호
    • /
    • pp.111-117
    • /
    • 2023
  • 시간-공간적 의존성을 모두 고려하는 방법으로 그래프 신경망과 순환 신경망을 함께 사용하는 연구가 많이 진행되고 있다. 특히 그래프 신경망은 새롭게 활발히 연구되고 있는 분야이다. 서울시 자전거 대여 서비스(일명 따릉이)는 서울시 곳곳에 대여소를 갖추고 있으며 각 대여소에서 대여 정보가 충실하게 기록되어 있는 시계열 자료이다. 각 대여소의 대여 정보는 시간에 따른 주기성을 보이는 시간적인 특성을 갖추고 있으며, 지역적인 특성도 대여 현황에 큰 영향을 미치리라고 생각된다. 지역적 상관관계는 그래프 신경망을 이용하여 잘 이해할 수 있다. 이 연구에서는 서울시 자전거 대여 서비스의 시계열 데이터를 그래프로 재구성하고 그래프 신경망과 순차 신경망을 결합한 대여 예측 모델을 개발하였다. 시간에 따른 주기성과 같은 시간 특성과 지역적인 특성 및 각 대여소의 중요도 정도를 고려하였다. 대여소의 중요도 정도는 대여량 예측에 중요한 인자로 사용됨을 확인하였다.

변위 시계열 데이터를 이용한 교량거더의 Flutter 계수 추정기법에 관한 연구 (A Study on the Identification Method for Flutter Derivatives of Bridge Girders using Displacement Time History Data)

  • 이재형;민원;이용재
    • 한국강구조학회 논문집
    • /
    • 제13권5호
    • /
    • pp.525-533
    • /
    • 2001
  • 교량의 내풍 안전성을 평가하기 위해서는 플러터 계수(Flutter Derivatives)의 안정적 추정이 필요하다. 본 논문에서는 풍동실험에서 얻어지는 시간영역에서의 데이터중 변위 시계열데이터를 이용해서 플러터 계수를 구하는 동특성 계수 측정기법 2가지를 검토하였다. 검토된 MITD(Modified Ibrahim Time Domain) 방법과 AKF(Adaptive Kalman Filtering) 방법은 2차원단면모형 실험으로부터 동시에 8개의 플러터 계수를 산출할 수 있는 유용한 방법이다. 제안된 방법의 실제상황에서의 적용성을 검토하기 위해서 Bandlimited Gausian white noise을 가상의 데이터에 첨가하여 수학적 시뮬레이션으로 잡음에 대한 안정성을 검증해 보았다. 그 결과 교량의 플러터 해석에서는 본 연구에서 검증된 MITD 방법을 통한 플러터 계수의 산출이 추전된다.

  • PDF

자동작곡시스템 구현을 위한 인공신경망의 학습방법 (Training Method of Artificial Neural Networks for Implementation of Automatic Composition Systems)

  • 조제민;류은미;오진우;정성훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권8호
    • /
    • pp.315-320
    • /
    • 2014
  • 작곡은 작곡가의 경험을 바탕으로 표현하고자 하는 감정을 멜로디로 나타내는 창작활동이다. 따라서 작곡가의 작곡 과정을 그대로 본따서 자동작곡프로그램을 만드는 것은 매우 어렵다. 우리는 '창작은 모방을 통하여 가능하다'는 전제하에 본 논문에서 인공신경망의 학습기능을 이용하여 자동작곡시스템을 구현하는 방법을 제안한다. 이를 위하여 먼저 기존 곡을 인공신경망이 학습할 수 있는 시계열 데이터로 변환하는 방법을 제시하였다. 또한 곡의 특성상 반복되는 시계열 데이터를 제대로 학습하기 위하여 곡의 마디를 함께 학습하는 방법을 고안하였다. 학습된 인공신경망에 새로운 곡의 도입부 시계열 데이터를 만들어 넣어주면 인공신경망이 나머지 시계열 데이터를 만들어준다. 이를 음표와 박자로 변환하면 새로운 곡이 완성된다. 다만, 인공신경망의 출력은 음악이론과 다른 박자와 다른 화성의 음표를 출력할 수 있기 때문에 이를 후처리로 보정해 주어야 한다. 본 논문에서는 박자 후처리 프로그램만 구현하여 적용하였으며, 화성 후처리는 사람이 직접 하였다. 화성 후처리는 복잡하여 추후연구에서 구현할 예정이다.

인공신경망과 시계열 분석을 이용한 해상교통량 예측 (A Prediction of Marine Traffic Volume using Artificial Neural Network and Time Series Analysis)

  • 유상록;김종수;정중식;정재용
    • 해양환경안전학회지
    • /
    • 제20권1호
    • /
    • pp.33-41
    • /
    • 2014
  • 본 연구는 기존의 회귀분석과는 달리 시계열 분석과 인공신경망 모형을 이용하여 장래 해상교통량을 예측하였다. 특히, 시계열 분석을 통한 예측값을 인공신경망 모형에 추가 입력변수로 적용하여 장래 해상교통량 예측을 제고하고자 하였다. 본 연구는 인천항의 1996년부터 2013년까지 월별 관측값을 대상으로 하였다. 모형의 예측력 검증을 위해 1996년부터 2012년까지 관측값을 대상으로 구축한 모형으로부터 2013년을 예측하여 실제 관측값과의 비교로 적합한 모형을 판별하였다. 인천항의 2015년 장래 해상교통량은 매월 평균 교통량보다 5월과 11월에 각 5.9 %, 4.5 % 많았으며, 1월과 8월은 매월 평균 교통량보다 각 8.6 %, 4.7 % 적은 것으로 예측되었다. 따라서 인천항은 계절에 따른 월별 교통량의 차이를 확인할 수 있다. 본 연구는 해상교통 현장관측 조사시 계절에 따른 교통량의 특성을 반영할 수 있는 기초 자료로 활용될 수 있다.