In this paper we introduce the time series clustering methods in the time and frequency domains and discuss the merits or demerits of each method. We analyze 15 daily stock prices of KOSPI 200, and the nonparametric method using the wavelet shows the best clustering results. For the clustering of nonstationary time series using the spectral density, the EMD method remove the trend more effectively than the differencing.
As a large amount of data is produced in each industry, a number of time series pattern prediction studies are being conducted to make quick business decisions. However, there is a limit to predicting specific patterns in nonlinear time series data due to the uncertainty inherent in the data, and there are difficulties in making strategic decisions in corporate management. In addition, in recent decades, various studies have been conducted on data such as demand/supply and financial markets that are suitable for industrial purposes to predict time series data of irregular random walk models, but predict specific rules and achieve sustainable corporate objectives There are difficulties. In this study, the prediction results were compared and analyzed using the Chaos analysis method for roulette data and financial market data, and meaningful results were derived. And, this study confirmed that chaos analysis is useful for finding a new method in analyzing time series data. By comparing and analyzing the characteristics of roulette games with the time series of Korean stock index future, it was derived that predictive power can be improved if the trend is confirmed, and it is meaningful in determining whether nonlinear time series data with high uncertainty have a specific pattern.
Journal of the Korean Data and Information Science Society
/
v.22
no.5
/
pp.829-837
/
2011
Since Harvey (1989), many approaches for applying unobserved components (UC) models to both univariate and multivariate time series analysis have been developed. However, practitioners still tend to use traditional methods such as exponential smoothing or ARIMA models for modeling and predicting time series data. It is well known that the UC model combines the flexibility of ARIMA models and the easy interpretability of exponential smoothing models by using unobserved components such as trend, cycle, season, and irregular components. This study reviews the UC model and compares its relative performances with those of the other models in modeling and predicting the real gross domestic products (GDP) in Korea. We conclude that the optimal model is the UC model on basis of root mean squared error.
Communications for Statistical Applications and Methods
/
v.16
no.1
/
pp.127-135
/
2009
It is necessary to forecast the amount of the maximum electricity demand for stabilizing the flow of electricity. The time series data was collected from the Korea Energy Research between January 2000 and December 2006. The data showed that they had a strong linear trend and seasonal change. Winters seasonal model, ARMA model were used to examine it. Root mean squared prediction error and mean absolute percentage prediction error were a criteria to select the best model. In addition, a nonstationary generalized extreme value distribution with explanatory variables was fitted to forecast the maximum electricity.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.193-195
/
2005
서브시퀀스 매칭은 주어진 질의 시퀀스와 변화의 추세가 유사한 서브시퀀스들을 시계열 데이터베이스로부터 검색하는 연산이다. 본 논문에서는 크기 효과로 인한 서브시퀀스 매칭의 심각한 성능 저하 현상을 정량적으로 관찰하여, 하나의 윈도우 크기를 대상으로 만든 단 하나의 인덱스만을 이용하는 것은 실제 응용에서 만족할만한 성능을 제공할 수 없다는 것을 규명하였다. 또한, 이러한 문제로 인해 다양한 윈도우 크기를 기반으로 다수의 인덱스들을 구성하여 서브시퀀스 매칭을 수행하는 인덱스 보간법의 응용이 필요함을 보였다. 인덱스 보간법을 응용하여 서비시퀀스 매칭을 수행하기 위해서는 먼저 다수의 인덱스들을 위한 윈도우 크기들을 결정해야 한다. 본 연구에서는 물리적 데이터베이스 설계방식을 이용하여 이러한 최적의 다수의 윈도우 크기들을 선정하는 문제를 해결하였다. 이를 위하여 시계열 데이터베이스에서 수행될 예정인 질의 시퀀스들의 집합과 인덱스 구성의 기반이 되는 윈도우들의 크기의 집합이 주어질 때, 전체 서브시퀀스 매칭들을 수행하는 데에 소요되는 비용을 예측할 수 있는 공식을 산출하였다. 또한, 이 비용 공식을 이용하여 전체 서브시퀀스 매칭들의 성능을 극대화 할 수 있는 최적의 윈도우 크기들을 결정하는 알고리즘을 제안하였으며, 이 알고리즘의 최적성과 효율성을 이론적으로 규명하였다. 끝으로, 실험에 의한 성능 평가를 제안된 기법의 우수성을 제시하였다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.366-366
/
2022
유역의 하천유량과 같은 수문 시계열을 모의 또는 예측하기 위한 수문 모델링에서 최근 기계 학습 방법을 활용한 연구가 활발하게 적용되고 있는 추세이다. 이러한 데이터 기반 모델링 접근법은 입출력 자료에서 관찰된 패턴을 학습하며, 특히, 장단기기억(Long Short-Term Memory, LSTM) 네트워크는 많은 연구에서 수문 시계열 예측에 대한 적용성이 검증되었으나, 장기간의 고품질 관측자료를 활용할 때 더 나은 예측성능을 보인다. 그러나 우리나라의 경우 장기간 관측된 고품질의 하천유량 자료를 확보하기 어려운 실정이다. 따라서 본 연구에서는 LSTM 네트워크의 학습 시 가용한 모든 유역의 자료를 통합하여 학습시켰을 때 하천유량 예측성능을 개선할 수 있는지 판단해보고자 하였다. 이를 위해, 우리나라 13개 댐 유역을 대상으로 대상 유역의 자료만을 학습한 모델의 예측성능과 모든 유역의 자료를 학습한 모델의 예측성능을 비교해 보았다. 학습은 2001년부터 2010년까지 기상자료(강우, 최저·최고·평균기온, 상대습도, 이슬점, 풍속, 잠재증발산)를 이용하였으며, 2011년부터 2020년에 대해 테스트 되었다. 다지점 통합학습을 통해 테스트 기간에 대해 예측된 각 유역의 일 하천유량의 KGE 중앙값이 0.74로 단일지점 학습을 통해 예측된 KGE(0.72)보다 다소 개선된 결과를 보여주었다. 다지점 통합학습이 하천유량 예측에 큰 개선을 달성하지는 못하였으며, 추가적인 가용 자료 확보와 LSTM 구성의 개선을 통해 추가적인 연구가 필요할 것으로 판단된다.
The objective of this study is to examine the trends in information systems research. The abstracts of 1,245 articles were extracted from three leading Korean journals published between 2002 and 2016: Asia Pacific Journal of Information Systems, Information Systems Review, and The Journal of Information Systems. Time series analysis and topic modeling methods were implemented. The topic modeling results showed that the research topics were mainly "systems implementation", "communication innovation", and "customer loyalty". The time series regression results indicated that "customer satisfaction", "communication innovation", "information security", and "personal privacy" were hot topics, and on the other hand, "system implementation" and "web site" were the least popular. This study also provided suggestions for future research.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.530-532
/
2003
서브시퀀스 매칭은 주어진 질의 시퀀스와 변화의 추세가 유사한 서브시퀀스들을 시계열 데이터베이스로부터 검색하는 연산이다. 본 논문에서는 서브시퀀스 매칭 처리의 성능 병목을 파악하고, 이를 해결함으로써 전체 서브시퀀스 매칭의 성능을 크게 개선하는 방안에 관하여 논의한다. 먼저, 사전 실험을 통하여 후처리 단계가 서브시퀀스 매칭의 성능 병목이며, 후처리 단계의 최적화가 기존의 서브시퀀스 매칭 기법들이 간과한 매우 중요한 이슈임을 지적한다. 이러한 서브시퀀스 매칭의 성능 병목을 해결하기 위하여 후처리 단계를 최적으로 처리할 수 있는 간단하면서도 매우 효과적인 기법을 제안한다. 제안된 기법은 후처리 단계에서 후보 서브시퀀스들이 질의 시퀀스와 실제로 유사한가를 판단하는 순서를 조정함으로써 기존의 후처리 단계의 처리에서 발생하는 많은 디스크 액세스의 중복과 CPU 처리의 중복을 완전히 제거할 수 있다. 실제 데이터와 생성 데이터를 이용한 다양한 실험들을 통하여 제안된 기법의 성능 개선 효과를 정량적으로 검증한다.
The Incheon airport is a gateway to and from the Republic of Korea and has a great influence on the image of the country. Therefore, it is necessary to predict the number of airport passengers in the long term in order to maintain the quality of service at the airport. In this study, we compared the predictive performance of various time series models to predict the air passenger demand at Incheon Airport. From 2002 to 2019, passenger data include trend and seasonality. We considered the naive method, decomposition method, exponential smoothing method, SARIMA, PROPHET. In order to compare the capacity and number of passengers at Incheon Airport in the future, the short-term, mid-term, and long-term was forecasted by time series models. For the short-term forecast, the exponential smoothing model, which weighted the recent data, was excellent, and the number of annual users in 2020 will be about 73.5 million. For the medium-term forecast, the SARIMA model considering stationarity was excellent, and the annual number of air passengers in 2022 will be around 79.8 million. The PROPHET model was excellent for long-term prediction and the annual number of passengers is expected to be about 99.0 million in 2024.
Through this study, we studied how to consider environment variables (such as temperatures, weekend, holiday) closely related to electricity demand, and how to consider the characteristics of Korea electricity demand. In order to conduct this study, Smoothing method, Seasonal ARIMA model and regression model with AR-GARCH errors are compared with mean absolute error criteria. The performance comparison results of the model showed that the predictive method using AR-GARCH error regression model with environment variables had the best predictive power.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.