• 제목/요약/키워드: 시계열 정보

검색결과 1,199건 처리시간 0.03초

시계열 분류를 위한 PIPs 탐지와 Persist 이산화 기법들을 결합한 시계열 표현 (Time Series Representation Combining PIPs Detection and Persist Discretization Techniques for Time Series Classification)

  • 박상호;이주홍
    • 한국콘텐츠학회논문지
    • /
    • 제10권9호
    • /
    • pp.97-106
    • /
    • 2010
  • 시계열 데이터를 효율적이고 효과적으로 처리하기 위해 다양한 시계열 표현 방법들이 제안되었다. SAX(Symbolic Aggregate approXimation)는 단편화와 이산화 기법들을 결합한 시계열 표현 방법으로, 시계열 분류 문제에 성공적으로 적용되었다. 그러나 SAX는 시계열의 움직임을 평활하여 시계열의 중요한 동적 패턴들을 정확히 표현하기 위해 세그먼트 수를 크게 해야 한다. 본 논문은 PIPs (Perceptually Important Points)탐지 기법과 Persist 이산화 방법을 결합한 시계열 표현 방법을 제안한다. 제안된 방법은 시계열의 중요한 변곡점들을 나타내는 PIP 들을 탐지하여 고차원 시계열의 동적 움직임을 저차원 공간에서 표현한다. 그리고 시계열의 자기 전이와 주변 확률 분포를 KL 다이버전스에 적용하여 최적의 이산화 영역들을 결정한다. 제안된 방법은 시계열의 차원 축소과정에서 정보 손실을 최소화하여 시계열 분류의 성능을 향상시킨다.

차별학습에 의한 시계열 예측에 대한 신경망접근 (Neural-based Approach to Time Series Prediction with Discriminant Learning)

  • 조태호;서정현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.281-284
    • /
    • 2000
  • 시계열 예측에 있어서 과거의 측정치 보다 최근의 측정치가 미래의 측정치 예측에 중요한 영향을 미친다. 시계열 예측에 있어서 최근의 측정치와 과거의 측정치가 미래의 값을 예측하는 인자로서 차별화 되어 학습해야 할 것이다. 기존의 시계열에 대한 신경망 접근에서는 최근의 측정치에 대한 학습 패턴과 과거의 측정치에 대한 학습 패턴을 동일하게 학습하였다. 이 논문에서는 과거의 학습패턴과 최근의 학습 패턴을 학습 횟수 면에서 차별화 하였다. 이러한 학습을 이 논문에서는 차별학습이라 한다. 차별학습에서는 주어진 학습 패턴을 시간 순으로 나열하고 일정 개수로 분할한다. 시간의 역순에 의해 등차 또는 등비의 형태로 학습 횟수를 설정한다. 각 학습 패턴의 분말집단을 시간의 역순으로 일정 횟수를 감소시켜 학습 횟수를 설정하는 등차차별학습과 일정 비율로 감소시켜 학습횟수를 설정하는 등비차별학습을 소개한다. 기존의 신경망 접근 방법과 이 논문에서 제안한 신경망 접근방법을 비교하기 위해 Mackay-Galss 공식에 의해 인공적으로 생성된 시계열 데이터를 예로 사용하였다.

  • PDF

시계열 데이터로부터 경향성을 이용한 순차패턴의 탐색 (Rule discovery for sequential patterns of trend from Time-Series)

  • 오용생;남도원;장지숙;이동하;이전영
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 추계정기학술대회:지능형기술과 CRM
    • /
    • pp.325-332
    • /
    • 2000
  • 데이터마이닝 분야에서 시계얼 데이터(time-series data)내에서 숨어 있는 순차패턴의 발견은 상품(Items)이나 어떤 사건(Event)과 같이 데이터의 특징이 명확한 대상에 대한 연구는 많이 되어왔으나 수치 값을 가지는 시계열 데이터에서 이들 내부에 숨어 있는 패턴을 발견하는 것은 최근에 관심을 가지게 되었다. 우리는 시계열 데이터를 시간적 변화에 따라 값의 변화 경향(Trend)이 같은 데이터 그룹을 패턴 요소인 벡터 (Vestor)로 표현하여 이들을 이용해서 흥미로운 패턴들을 발견한다. 이와 같은 벡터적인 표현으로 우리는 벡터들 간의 포함관계를 적용해 모든 가능한 형태의 패턴 발견을 목적으로 한다. 또한 경향성을 가진 패턴 요소를 사건(Event)과 같이 취급함으로써 다양한 종류의 시계열 데이터가 동시에 발생될 때 이들 상호간에 연관된 시간적 패턴을 찾을 수 있다. 따라서 이 연구에서 제안하는 경향성을 기초로 한 순차패턴의 탐식은 기업내부의 판매실적의 변화 패턴이나, 고객의 구매 행동분석에 적용이 가능하리라 여겨진다

  • PDF

시계열 예측을 고려한 속성 선택 딥러닝 모델 (Feature Selection Deep Learning Model considering Time Series Prediction)

  • 박광호;;류근호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.509-512
    • /
    • 2021
  • 최근 다양한 시계열 데이터의 분석이 딥러닝 방법을 통하여 수행되고 있다. 주로 RNN과 LSTM을 이용하여 많은 시계열 예측이 이루어지고 있다. 하지만 이러한 예측모델을 생성하는데 가장 중요한 것은 어떠한 변수를 얼마나 사용하는지가 중요하다. 이에 대하여, 본 연구에서는 3개의 신경망을 적용하여, 속성을 선택하는 Selection MLP, 속성에 가중치를 부여하는 Extraction MLP 그리고 예측을 진행하는 Prediction MLP로 이루어진 MLP-SEL 구조를 제안한다. 비교를 위하여 다른 순환 신경망에 대하여 시계열 데이터에 대한 예측을 진행하였으며, 그 결과 우리가 제안한 MLP-SEL 모델의 시계열 예측이 좋은 성능을 보였다.

활용 목적 기반 시계열 데이터 변환 방법 (Transformation method of time series data based on utilization purpose)

  • 황지수;문재원
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.675-678
    • /
    • 2021
  • 본 논문에서는 데이터 처리에 대한 비전문가들도 시계열 데이터를 필요한 형태로 쉽게 변환하는 방법을 제안한다. 이를 위해 국내 및 해외의 다양한 공공 시계열 데이터들의 저장 형태를 파악하였고 가장 빈번하게 사용되는 4가지의 시계열 데이터 변환 패턴을 정의하였다. 또한, 변환 패턴을 정형화하기 위해 파라미터를 구조화하고 이를 해석하여 변환하는 변환 모듈을 개발하였다. 변환 모듈은 제안하는 입력 파라미터의 값에 따라 데이터 변환이 이루어지기 때문에 비전문가의 활용이 쉬우며 다수의 공개 데이터를 원하는 형태로 변환할 수 있음을 검증하였다.

  • PDF

시차를 고려한 시계열 클러스터링 방법에 관한 연구 (A Study on Time Shifted Time Series Data Clustering)

  • 정재용;이주홍;송재원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.382-384
    • /
    • 2020
  • 데이터 클러스터링은 데이터의 숨겨진 패턴을 찾아낸다. 시계열 데이터에서 시차가 존재하는 데이터를 클러스터링하는 것은 데이터의 미래 패턴을 찾아내기 위해서 사용한다. 데이터 클러스터링을 수행하기 위한 여러 가지 Metric이 존재하지만, 시계열 데이터의 노이즈로 인해서 클러스터링을 수행하는 Metric을 설정하는데 제약이 존재한다. 본 논문은 기존 시계열 데이터가 가지고 있는 노이즈를 PIP 기법을 사용하여 제거하고, 노이즈가 없는 시계열 데이터를 클러스터링하기 위한 효율적인 새로운 Metric을 제안한다.

가상 트랜잭션을 이용한 시계열 데이터의 데이터 마이닝 (Data Mining Time Series Data With Virtual Transaction)

  • 김민수;김철환;김응모
    • 정보처리학회논문지D
    • /
    • 제9D권2호
    • /
    • pp.251-258
    • /
    • 2002
  • 대용량의 데이터들로부터 사용자가 인하는 데이터를 찾기 위하여 많은 데이터 마이닝 기술들이 연구되어 실제 응용프로그램에서 많이 적용되고 있다. 이러한 데이터 마이닝 기술들은 시계열 데이터를 이용하는 경우보다 트랜잭션 데이터를 이용하여 유용한 정보를 찾는 경우에 초점이 맞춰져 있다. 본 논문에서는 시계열 데이터를 트랜잭션 데이터로 변환하는 접근방법을 소개한다. 가상 트랜잭션은 서로 상대적으로 근접한 시간에 발생하는 이벤트의 집합이라고 정의하며, 가상 트랜잭션 생성기는 가상 트랜잭션을 생성시 시간윈도우와 이벤트 윈도우 방법을 사용한다. 본 논문의 접근 방법을 사용하여 기존의 트랜잭션 데이터를 이용하는 많은 데이터 마이닝 알고리즘들을 수정 없이 시계열 데이터에 적용하여 유용한 정보를 찾을 수 있다.

시계열 섭동 모델링 알고리즘 : 운전자 프로그래밍과 양자역학 섭동이론의 통합 (Time Series Perturbation Modeling Algorithm : Combination of Genetic Programming and Quantum Mechanical Perturbation Theory)

  • 이금용
    • 정보처리학회논문지B
    • /
    • 제9B권3호
    • /
    • pp.277-286
    • /
    • 2002
  • 양자역학 섭동이론과 유전자프로그래밍(GP) 기법을 접목시킴으로써 실세계(Real-world)에서 발생하는 카오스 시계열에 대하여 수학모델을 구축, 예측하기 위한 새로운 알고리즘을 개발하였다. 시계열 분석과 양자역학 파동방정식의 해를 구하는 섭동이론과의 절차적 유사성을 논하고, 이것을 GP로 구현하는 전형적 접근방안을 제시한다. 함수집합(Function Set)으로서 직교함수(Orthogonal Functions)를 이용하고 병렬 집단을 사용하는 GP를 이용하여 원 시계열에 대한 초기 수학모델을 구하고, 원 시계열 데이터로부터 모델의 평가값을 뺀 나머지로 구성되는 잔여 시계열에 대하여 다시 GP를 적용하는 과정을 일정한 종료조건이 충족될 때가지 반복함으로써 실세계 카오스 시계열에 대한 정확성 높은 수학모델을 구축하는데 성공하였다. 타 방법론과의 비교와 향후 해결과제에 대하여도 소개한다.

Unit Root Test를 기반으로 한 장기 시계열 데이터의 Non-Stationary 발생에 따른 구조 변화 검정 및 시각화 연구 (A Study on the Test and Visualization of Change in Structures Associated with the Occurrence of Non-Stationary of Long-Term Time Series Data Based on Unit Root Test)

  • 유재성;주재걸
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권7호
    • /
    • pp.289-302
    • /
    • 2019
  • 시계열의 구조 변화란, 전체 시계열 자료를 구성하는 기간에서 관측치들의 분포가 상대적으로 안정적이다가, 특정 시점에서 분포 특성의 급격한 변화를 보이는 것을 의미한다. 비정상(non-stationary) 장기 시계열 안에서도, 단기적인 추세의 변화가 일시적인 것인지, 아니면 구조적으로 변한 것인지를 적시에 판단하는 것은 중요하다. 이는 시계열 추세의 변화를 상시 감지하여, 변화에 맞는 적정한 대응을 할 필요가 있기 때문이다. 본 연구에서는 단위근 검정법을 기반으로 한 검정 결과를 시각화함으로써, 의사결정자가 시계열의 구조 변화를 손쉽게 파악할 수 있는 방안을 제시하였다. 특히 시계열을 분할한 후 검정하는 방법을 통해, 장기 시계열일 때에도 단기 구조 변화를 파악할 수 있도록 하였다.

뇌파 분석을 위한 LTS 추정기법을 이용한 시계열 데이터의 효율적인 프랙탈 차원 추정 (Efficient Estimation of the Fractal Dimension from Time Series Data Using LTS (Least Trimmed Squares) Estimator for EEG (Encephalogram) Analysis)

  • 이광호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.78-80
    • /
    • 1998
  • 본 논문은 일차원의 시계열 데이터를 입력을 하여 위상공간 재구성 과정을 거쳐 다차원 위상공간상에서 프랙탈 차원을 계산하는 효율적인 방법을 제안한다. 프랙탈 차원의 추정에 소요되는 계산량을 줄이기 위해 로그 연산을 비트 연산으로 대체하고, 거리계산의 순서를 바꿈으로써 위상공간의 차원에 무관한 상수 시간의 계산복잡도를 가지는 알고리즘을 구현하였다. 또한 최소절단자승 추정기법을 적용하여 로그-로그 그래프 상에서의 기울기 추정을 함으로써 프랙탈 차원의 추정치에 대한 정확도를 높였다. 참값이 알려진 시계열 데이터에 대한 차원 추정 실험을 통하여 제안된 방법의 정확성을 보였다.

  • PDF