• Title/Summary/Keyword: 시계열 자료

Search Result 1,498, Processing Time 0.031 seconds

Estimating Monthly Tourist Population for Analysis of Green Tourism Potential in Village Level - A Case Study of Hahoe Village - (그린투어리즘 포텐셜 분석을 위한 관광마을 수준의 월별 방문객 추정 - 하회마을을 중심으로 -)

  • Gao, Yujie;Kim, Dae-Sik;Kim, Yong-Hoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.17 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • 본 연구에서는 ARIMA(Autoregressive Integrated Moving Average) 모델을 이용하여 농촌관광마을의 월별 관광객을 추정하였다. 단일 마을에 대한 시계열 자료를 경상북도 안동시에 위치한 하회마을을 대상으로 구축하였다. 월별 시계열 자료는 2000년부터 2010년까지 구성되었는데(2008년도 누락), 2000년에서 2007년까지 자료는 최적 모델의 도출에 나머지는 예측치의 검정에 사용되었다. 연구 결과 최적모델에 필요한 시계열 자료의 길이는 6년으로 나타났으며, 최적모델은 계절성을 고려한 SARIMA(2,1,1)(1,1,2)12로 나타났다. 최적 시계열 년수로 나타난 6년을 사용하여 2000-2005, 2001-2006, 그리고 2002-2007의 자료로부터 각각 SARIMA(2,1,1)(1,1,2)12를 도출하여, 차기년도들에 대한 예측결과를 비교한 결과, 높은 $R^2$값을 보였다.

Modelling of Wind Wave Pressure and Free-surface Elevation using System Identification (시스템 식별기법을 활용한 파압과 해수면 모델링)

  • Cieslikiewicz, Witold;Badur, Jordan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.422-432
    • /
    • 2013
  • A System Identification method to develop parametric models linking free surface elevation and wave pressure is presented and two models are built allowing for either wave pressure or free surface elevation simulation. Linear, time invariant model structures with static nonlinearities are assumed and solutions are sought in a form of autoregressive model with extra input (ARX). An arbitrary chosen free-surface elevation and wave pressure dataset is used for estimation of the models, which are subsequently verified against datasets with similar pressure gauge depth but different free-surface elevation spectra due to different meteorological conditions. It is shown that free-surface simulation using System Identification methods can perform better than traditional linear transfer function derived from linear wave theory (LTF), while wave pressure simulation quality using presented methods is generally similar to that obtained with corrected LTF.

Improved Trend Estimation of Non-monotonic Time Series Through Increased Homogeneity in Direction of Time-variation (시변동의 동질성 증가에 의한 비단조적 시계열자료의 경향성 탐지력 향상)

  • Oh, Kyoung-Doo;Park, Soo-Yun;Lee, Soon-Cheol;Jun, Byong-Ho;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.617-629
    • /
    • 2005
  • In this paper, a hypothesis is tested that division of non-monotonic time series into monotonic parts will improve the estimation of trends through increased homogeneity in direction of time-variation using LOWESS smoothing and seasonal Kendall test. From the trend analysis of generated time series and water temperature, discharge, air temperature and solar radiation of Lake Daechung, it is shown that the hypothesis is supported by improved estimation of trends and slopes. Also, characteristics in homogeneity variation of seasonal changes seems to be more clearly manifested as homogeneity in direction of time-variation is increased. And this will help understand the effects of human intervention on natural processes and seems to warrant more in-depth study on this subject. The proposed method can be used for trend analysis to detect monotonic trends and it is expected to improve understanding of long-term changes in natural environment.

패널 승법 계절 시계열 모형의 동질성 검정과 적용

  • 이성덕;김성호;차경엽
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • 계절성을 갖는 승법 계절 혼합 시계열 모형들의 동질성 검정을 위하여 Wald 검정 통계량을 구하고 그 극한 분포가 ${\chi}^2$-분포함을 보였으며 시뮬레이션 연구를 통하여 뒷받침하였다. 도시 규모가 비슷한 우리나라 지역별 평균 온도자료를 가지고 이 동질성 검정을 수행하여 시계열을 지역별로 모형화하여 예측한 것과 동질성이 있는 것을 묶고 모형화하여 예측한 것에 대한 예측 오차를 비교하였다.

  • PDF

Future projections of extreme precipitation by using CMIP6 database at finer scales over South Korea (CMIP6 기후변화 자료를 이용한 국내 미래 극한강우의 예측)

  • Kim, Jongho;Van Doi, Manh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.368-368
    • /
    • 2021
  • 기후 변화로 인한 극한사상의 크기와 빈도 변화를 예측하는 것은 수공 인프라 설계에 있어 주된 관심사 중 하나이다. 보통 극한사상에 대한 강도, 빈도, 지속시간에 대한 정보가 필요하며, 이는 일반적으로 IDF(Intensity-Duration-Frequency) 곡선으로부터 추출된다. 최근 CMIP(Coupled Model Intercomparison Project) 6단계에서 새로운 이산화탄소 배출 시나리오와 업데이트된 기후모델을 이용하여 미래의 기후에 대한 예측 시계열을 발표했으므로, 미래 기후 변화 시나리오를 기반으로 IDF 곡선을 새로 추정하고 미래 기간의 변화를 평가할 필요가 있다. 본 연구에서는 한국의 40개 지역에 대해 일단위 자료를 시단위로 축소(downscaling)한 후, 확률론적 일기생성기(stochastic weather generator)를 이용하여 30년 시단위 시계열을 100개의 앙상블로 생성하였다. 생성된 시계열로부터 연최대강수량 시계열을 재구성하여 GEV 분포와 gumbel 분포에 적용하였다. 적합도 검정(Anderson-Darling(AD) 검정 및 Kolmogorov-Smirnov(KS) 검정)을 수행하였으며, 과거 자료를 기반으로 생성된 IDF 곡선과 비교 검증하였다. CMIP5의 기후변화 자료를 사용한 결과와 CMIP6 기후변화의 결과를 비교하였으며, 본 연구의 주요 결과는 다음과 같다. (1) 향후 강우 강도는 증가할 것이며 강우 강도의 증가는 말기에 현저하게 관찰될 것이다. (2) 시간별 강우 강도의 미래 변화가 일단위 강우 강도보다 더 크다. (3) 강우 강도의 불확실성을 정량화하기 위해 앙상블을 사용해야 한다. (4) 강우 강도의 미래 변화에 대한 공간적인 경향이 확인된다. 시단위 시계열 앙상블을 생성하여 추정된 IDF 곡선에 대한 정보는 기후 변화의 영향을 평가하고 적절한 적응 및 대응 전략을 개발하는 데 도움이 될 것이다.

  • PDF

Prediction for spatial time series models with several weight matrices (여러 가지 가중행렬을 가진 공간 시계열 모형들의 예측)

  • Lee, Sung Duck;Ju, Su In;Lee, So Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • In this paper, we introduced linear spatial time series (space-time autoregressive and moving average model) and nonlinear spatial time series (space-time bilinear model). Also we estimated the parameters by Kalman Filter method and made comparative studies of power of forecast in the final model. We proposed several weight matrices such as equal proportion allocation, reciprocal proportion between distances, and proportion of population sizes. For applications, we collected Mumps data at Korea Center for Disease Control and Prevention from January 2001 until August 2008. We compared three approaches of weight matrices using the Mumps data. Finally, we also decided the most effective model based on sum of square forecast error.

Recent Trends in the Application of Extreme Learning Machines for Online Time Series Data (온라인 시계열 자료를 위한 익스트림 러닝머신 적용의 최근 동향)

  • YeoChang Yoon
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.15-25
    • /
    • 2023
  • Extreme learning machines (ELMs) are a major analytical method in various prediction fields. ELMs can accurately predict even if the data contains noise or is nonlinear by learning the complex patterns of time series data through optimal learning. This study presents the recent trends of machine learning models that are mainly studied as tools for analyzing online time series data, along with the application characteristics using existing algorithms. In order to efficiently learn large-scale online data that is continuously and explosively generated, it is necessary to have a learning technology that can perform well even in properties that can evolve in various ways. Therefore, this study examines a comprehensive overview of the latest machine learning models applied to big data in the field of time series prediction, discusses the general characteristics of the latest models that learn online data, which is one of the major challenges of machine learning for big data, and how efficiently they can learn and use online time series data for prediction, and proposes alternatives.

다중 시기 원격탐사 자료를 이용한 태풍 루사로 인한 강릉 사천천 주변 환경 변화 탐지

  • Park, No-Uk;Ji, Gwang-Hun
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.408-413
    • /
    • 2005
  • 이 논문에서는 2002년 여름 태풍 루사로 인해 많은 재해 피해를 입은 강원도 강릉시 사천천 주변의 변화 정보를 추출하고자 다중 시기 원격탐사 자료를 이용하였다. 태풍 루사 이전과 이후의 다중 시기 원격탐사 자료를 이용하여 변화 탐지 기법을 적용하여 사천천 주변의 환경 변화 정보를 추출하고 분석하였다. 시계열 자료를 이용함으로써 태풍 루사로 인한 재해 현황 정보뿐만 아니라 그 이후의 복구 과정을 확인할 수 있었으며, 앞으로 재해분야에 시계열 원격탐사 자료의 많은 활용이 기대된다.

  • PDF

Influence of Noise on Chaotic Time Series (카오스 시계열에 대한 잡음의 영향)

  • Choi, Min-Ho;Lee, Eun-Tae;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.355-363
    • /
    • 2009
  • The purpose of this paper is to investigate the influence of noise on chaotic time series. We used two time series of Lorenz system and of Great Salt Lake's volume data which are well known as chaotic systems. This study investigated the attractors, correlation dimensions, and Close Returns Plots and Close Returns Histograms of two time series to investigate the influence of noise as increasing noise level. We performed Chi-square test to the relative frequency of Close Returns Histogram from Close Returns Plot for the investigation of stochastic process of chaotic time series as increasing noise level of time series. As the results, two time series were changed from chaotic to stochastic series as noise level is increased. Finally, we analyzed the effect of noise cancellation by using Simple Moving Average method. The results of applications of Simple Moving Average method to Lorenz and GSL time series showed that we could effectively cancel the noise. Then we could confirm the applicability of Simple Moving Average method to cancel the noise for the hydrologic time series having chaotic characteristics.

Time series analysis for the amount of medicine from the Korea Consumer Agency (한국 소비자원 의료분야 처리금액에 대한 시계열 분석)

  • Hee Song Kang;Sukhui Kwon;SungDuck Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • The amount of money processed in medicine from the Korea Consumer Agency was studied by the various time series models. The medical data set from the Korea Consumer Agency were consisted of counseling, damage relief and conciliation. For the analysis of time series, autoregressive moving average model, vector autoregressive model and the transfer function model were used. We considered the stationarity and cross correlation function for the identification and fitting. As a result, the transfer function model showed a better prediction. Whereas, the vector autoregressive model also provided good information for the degree and duration of the influence of variables.