• 제목/요약/키워드: 시계열 일반화 선형 모형

검색결과 14건 처리시간 0.018초

상대오차예측을 이용한 자동차 보험의 손해액 예측: 패널자료를 이용한 연구 (Predicting claim size in the auto insurance with relative error: a panel data approach)

  • 박흥선
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.697-710
    • /
    • 2021
  • 상대오차를 이용한 예측법은 상대오차(혹은 퍼센트오차)가 중요시되는 분야, 특히 계량경제학이나 소프트웨어 엔지니어링, 또는 정부기관 공식통계 부분에서 기존 예측방법 외에 선호되는 예측방법이다. 그 동안 상대오차를 이용한 예측법은 선형 혹은 비선형 회귀분석 뿐 아니라, 커널회귀를 이용한 비모수 회귀모형, 그리고 정상시계열분석에 이르기까지 그 범위가 확장되어 왔다. 그러나, 지금까지의 분석은 고정효과(fixed effect)만을 고려한 것이어서 임의효과(random effect)에 관한 상대오차 예측법에 대한 확장이 필요하였다. 본 논문의 목적은 상대오차예측법을 일반화선형혼합모형(GLMM)에 속한 감마회귀(gamma regression), 로그정규회귀(lognormal regression), 그리고 역가우스회귀(inverse gaussian regression)의 패널자료(panel data)에 적용시키는데 있다. 이를 위해 실제 자동차 보험회사의 손해액 자료를 사용하였고, 최량예측량과 최량상대오차예측량을 각각 적용-비교해 보았다.

비선형 증발량 및 증발산량 시계열의 모형화를 위한 신경망-유전자 알고리즘 모형 1. 모형의 이론과 적용 (Neural Networks-Genetic Algorithm Model for Modeling of Nonlinear Evaporation and Evapotranspiration Time Series 1. Theory and Application of the Model)

  • 김성원;김형수
    • 한국수자원학회논문집
    • /
    • 제40권1호
    • /
    • pp.73-88
    • /
    • 2007
  • 본 연구의 목적은 결측 혹은 미계측 증발접시 증발량과 우리나라에서 계측되고 있지 않은 알팔파 기준증발산량의 산정을 위하여 유전자 알고리즘이 내재된 일반화된 회귀신경망모형을 개발하고 적용하는데 있다. 우리나라에서는 장기간동안 증발산계를 이용하여 알팔파 기준증발산량의 관측이 시행되지 않고 있으므로, 본 연구에서는 Penman-Monteith(PM) 공식을 이용하여 산정된 값을 계측된 알팔파 기준증발산량으로 가정하였다. 본 연구를 통하여 최적 증발접시 증발량과 알팔파 기준증발산량의 산정을 위한 COMBINE-GRNNM-GA(Type-1) 모형을 개발하였으며, 훈련, 테스트 및 재현과정을 통하여 COMBINE-GRNNM-GA(Type-1) 모형을 평가하였다. COMBINE-GRNNM-GA (Type-1) 모형은 제시된 기상인자를 평가할 수 있으며, 증발접시 증발량과 알팔파 기준증발산량에 대한 신뢰성 있는 자료를 구축할 수 있다. 더 나아가서 우리나라에서 관개배수 시스템 구축을 위한 참고자료를 제공할 수 있을 것으로 판단된다.

인공신경망을 이용한 경제 위기 예측 (The Prediction of Currency Crises through Artificial Neural Network)

  • 이형용;박정민
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.19-43
    • /
    • 2016
  • 이 연구에서 Asia 금융 위기의 원인을 고찰하여 보고, European Monetary Systems의 금융 위기와 비교하여 본다. Asian 신흥 국가들은 1997년도에 금융 위기를 경험하였고, European Monetary Systems의 국가들도 1992년도에 동일한 경험을 하였다. 또한, 중남미의 신흥 경제국가인 Mexico 역시 1994년에 금융위기를 겪었다. 이 연구의 목적은 이들 금융위기의 내면을 고찰하고 그 결과로부터 일반화된 법칙을 추출하는 것이다. 이 연구에서는 금융위기를 경험한 한국과 영국과 멕시코를 각각 세가지 다른 모형으로 연구하고 비교하였다. 이 접근 방법은 체계적인 조사를 통하여 세 국가의 차이점을 보여주고 또한 공통적인 내재 요인을 관찰한다. 이전의 많은 연구 방법들은 대부분 선형 회귀식을 통한 causal model에 초점을 맞추고 있지만, 이러한 선형 회귀 모형의 약점을 보완하여서 현실에 산재하며 존재하는 비 선형의 문제를 해결하기 위하여 또 다른 방법을 제안하여 본다. 이 연구에서 사용한 구조 방정식(Structural Equation Model) 모형은 현실로부터 원인을 추출하고 분석하는 연구에 적합하며, 신경망(Artificial Neural Network) 모형은 선형모형의 단점을 보완하여서 비 선형 요인을 설명해 준다. 구조방정식 모형에 적용하기 위하여서 LISREL(LInear Structural RELationship)을 사용하였다. LISREL은 확인적 요인분석과 계량경제학에서 개발된 연립방정식모델에 토대를 둔 다중회귀분석 및 경로분석 등이 결합된 성격을 갖는 방법론으로 다양한 연구에 적용된다. 또한 인공지능(Artificial Intelligence) 기법 중의 하나인 신경망 모형은 선형회귀 분석과 다른 형태의 결과를 도출한다. 세가지 방법론의 우수성을 비교하기 위하여 Hit ratio를 각 국가/ 각 방법론 별로 구분하여서 비교한 결과 다른 방법론 보다 신경망이 더 좋은 성과를 나타내고 있는 것을 확인할 수 있었다. 세가지 방법론에 각각 일반적인 환율 예측에 사용되는 변수를 사용하였다. 소비자 물가지수(Consumer Price Index), 국내총생산(Gross Domestic Product), 이자율(Interest rate), 주가지수(Stock Index), 경상수지(Current Account), 외환보유고(Foreign Reserves)의 6가지 변수를 이용하여서 환율을 예측하여서 급격한 환율 변화로 초래되는 경제위기를 예측하려고 하였다. 각각의 국가의 데이터는 대한민국은 1991년부터 1999년까지, 영국은 1986년부터 1995년까지, 멕시코는 1988년부터 1998년까지의 기간을 정하여서 시계열자료를 분기별로 사용하였다. 각각의 데이터는 Data Stream과 한국은행(Bank of Korea)의 데이터를 이용하여서 분석하였다. 선형회귀방정식을 이용한 분석과 구조방정식인 LISREL을 이용한 분석은 각각 Hit ratio가 국가별로 순위가 변동되기도 하였으나, 인공지능 방법론인 인공신경망의 경우는 모든 국가에서 가장 좋은 예측 결과를 나타내고 있었다. 이 논문은 환율의 변동에 대한 다양한 예측 모형을 비교하고 평가하여서 연구에서 제시하는 개념을 검토하였다는 점에서 의의를 갖는다.

Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석 (Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression)

  • 김선웅;최흥식
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.107-122
    • /
    • 2017
  • 주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.