• 제목/요약/키워드: 시계열 데이터 예측

검색결과 539건 처리시간 0.028초

수문 시계열 예측을 위한 LSTM의 다지점 통합 학습 방안 평가 (Evaluation of multi-basin integrated learning method of LSTM for hydrological time series prediction)

  • 최정현;원정은;정하은;김상단
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.366-366
    • /
    • 2022
  • 유역의 하천유량과 같은 수문 시계열을 모의 또는 예측하기 위한 수문 모델링에서 최근 기계 학습 방법을 활용한 연구가 활발하게 적용되고 있는 추세이다. 이러한 데이터 기반 모델링 접근법은 입출력 자료에서 관찰된 패턴을 학습하며, 특히, 장단기기억(Long Short-Term Memory, LSTM) 네트워크는 많은 연구에서 수문 시계열 예측에 대한 적용성이 검증되었으나, 장기간의 고품질 관측자료를 활용할 때 더 나은 예측성능을 보인다. 그러나 우리나라의 경우 장기간 관측된 고품질의 하천유량 자료를 확보하기 어려운 실정이다. 따라서 본 연구에서는 LSTM 네트워크의 학습 시 가용한 모든 유역의 자료를 통합하여 학습시켰을 때 하천유량 예측성능을 개선할 수 있는지 판단해보고자 하였다. 이를 위해, 우리나라 13개 댐 유역을 대상으로 대상 유역의 자료만을 학습한 모델의 예측성능과 모든 유역의 자료를 학습한 모델의 예측성능을 비교해 보았다. 학습은 2001년부터 2010년까지 기상자료(강우, 최저·최고·평균기온, 상대습도, 이슬점, 풍속, 잠재증발산)를 이용하였으며, 2011년부터 2020년에 대해 테스트 되었다. 다지점 통합학습을 통해 테스트 기간에 대해 예측된 각 유역의 일 하천유량의 KGE 중앙값이 0.74로 단일지점 학습을 통해 예측된 KGE(0.72)보다 다소 개선된 결과를 보여주었다. 다지점 통합학습이 하천유량 예측에 큰 개선을 달성하지는 못하였으며, 추가적인 가용 자료 확보와 LSTM 구성의 개선을 통해 추가적인 연구가 필요할 것으로 판단된다.

  • PDF

여러 가지 가중행렬을 가진 공간 시계열 모형들의 예측 (Prediction for spatial time series models with several weight matrices)

  • 이성덕;주수인;이소현
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권1호
    • /
    • pp.11-20
    • /
    • 2017
  • 시간의 변화뿐만 아니라 공간 위치의 변화를 함께 고려한 자료를 공간 시계열 자료라고 한다. 공간 시계열 자기회귀 이동평균 모형과 공간 시계열 중선형 모형에 대해 소개하고 각각의 Kalman Filter 방법에 의한 모수 추정의 과정을 거쳐 최종 선택된 모형의 예측력을 비교하였다. 또한 공간 시계열 자료의 모형에 포함되는 가중행렬에 대하여 기존의 방법인 동일한 가중치와 더불어 거리에 비례한 가중치와 인구수에 비례한 가중치를 제안하였다. 실증분석을 위해 한국질병관리본부에서 수집한 유행성 이하 선염 자료를 활용하여 가중치를 달리한 공간 시계열 모형을 적합시키고 예측하였다. 예측 오차 제곱합을 활용하여 어느 모형이 가장 효과적인 모형인지 판정하였다.

복합형 신경망을 이용한 시계열 예측 기법 (A Time Series Prediction Technique using Hybrid Neural Networks)

  • 한보경;양홍민;박소정;김호준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.768-769
    • /
    • 2017
  • 본 연구에서는 시계열예측 신경망기법에서 특징 선별기법을 적용하여 학습의 효율을 높이고 성능을 개선하는 방법론을 고찰한다. 순환구조 신경망을 사용하여 시계열 예측기를 구현하였으며, 효과적인 특징을 선별하기 위하여 FMM 신경망을 사용하여 특징의 연관도 요소를 산출하는 방법을 제시하였다. 모바일 결제시스템에서 실제 측정된 데이터를 사용하여 사용빈도 예측실험을 수행하였으며 그 결과를 통하여 제안된 기법의 유용성을 고찰하였다.

TISEAN 패키지를 이용한 전력 수요 시계열 분석 (Time Series Analysis of Maximum Electrical Power using the TISEAN package)

  • 추연규;박재현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.803-806
    • /
    • 2012
  • 비선형 동력학 시스템으로 판단되는 전력수요의 시계열 데이터를 분석하고 예측하기 위해 다양한 방법과 알고리즘이 적용되어져 왔다. 본 논문에서는 복잡한 비선형 시스템의 특성을 파악하기 위해 비선형 시계열 분석을 효과적으로 수행할 수 있는 각종 알고리즘과 코드를 패키지로 제공하는 TISEAN을 이용하여 전력수요 시계열 데이터가 가지고 있는 카오스 성질을 분석하였다.

  • PDF

한국 소비자원 의료분야 처리금액에 대한 시계열 분석 (Time series analysis for the amount of medicine from the Korea Consumer Agency)

  • 강희송;권숙희;이성덕
    • 응용통계연구
    • /
    • 제36권1호
    • /
    • pp.21-32
    • /
    • 2023
  • 한국 소비자원의 의료 분야 처리금액 자료에 대한 시계열 모형을 이용한 실증 분석을 연구하였다. 의료분야 처리금액 시계열 자료는 상담 처리금액, 피해 구제금액, 분쟁 조정 처리금액으로 나뉜 3개 변수를 사용하였고 분석에 사용된 시계열 모형은 ARIMA 모형, 벡터 자기회귀 모형 그리고 전이 함수를 이용한 시계열 모형이다. 이들 중 전이 함수를 이용한 시계열 모형이 단기 예측면에서 가장 우수한 예측력을 보였고 벡터자기회귀 모형도 변수간 영향력과 기간을 파악하는데 유용한 정보를 제공하였다.

시계열 예측을 위한 퍼지 학습 알고리즘 (Fuzzy Learning Algorithms for Time Series Prediction)

  • 김인택;공창욱
    • 한국지능시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.34-42
    • /
    • 1997
  • 본 논문은 새로은 퍼지 규칙의 생성을 위한 학습 알고리즘과 시계열 예측에의 응용을 다루고 있다. 데이터에서 IF-THEN문 형태의 퍼지 규칙을 생성시키는 과정에서 동일한 전건부(IF문)에 대해 상이한 후건부(THEN문)가 생겨 모순된 규칙을 형성시키는 경향이 있다. 수정된 중심값 방법(Modified Center Method)으로 명명된 새로운 알고리즘은 이와 같은 모순된 규칙의 형성을 효과적으로 해결하여, 시계열 예측을 수행하는데 그 오차를 줄일 수 있다. 알고리즘의 효과를 살표보기 위해 Mackey-Glass time series와 Gas Furnace data 분석에 적용하였다.

  • PDF

퍼지 시계열 예측을 위한 개선된 Particle Swarm Optimization 기법 (Advanced Particle Swarm Optimization Technique for Fuzzy Time Series Forecasting)

  • 박진일;이대종;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.11-12
    • /
    • 2008
  • 퍼지 시계열 예측은 전체 퍼지 구간에 따른 퍼지 소속 함수의 개수와 범위에 따라서 예측성능에 많은 영향을 미치고 있으며, 이러한 문제점을 개선하기 위한 방법으로 다수 객체들의 학습 및 군집 특성을 이용한 Particle Swarm Optimization기법을 도입하였다. 제안된 방법에서는 군집의 최적 객체를 전체 최적해와 각각의 퍼지 소속 함수들에 대한 최적해로 구분하여 탐색하는 기법을 제안한다. 실제 시계열 데이터를 이용한 실험을 통하여 기존의 연구 결과들과 비교함으로써 제안된 방법의 우수한 성능을 가짐을 검증하였다.

  • PDF

추가전용 데이터베이스에 대한 연속 마이닝 (Continuous Mining Over Append-Only Databases)

  • 김룡;이준욱;이양우;류근호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.10-12
    • /
    • 2002
  • 최근에 많은 새로운 타입의 어플리케이션에서 정보 시스템들에 대한 사용의 증가로 인해 연속 질의들은 여러 연구 프로젝트들에서 초점이 되고 있으며 연구가 활발히 진행되고 있다. 특히 시계열에 대해서 미래의 값에 대한 예측 모델과 FFT(Fast Fourier Transform)을 이용하여 새로운 값이 입력될 때마다 신속하게 응답할 수 있는 이웃에 관한 연속 질의에 대해 이미 연구되었다. 그러나 이것은 이웃에 관한 질의이며 또한 방대한 데이터를 처리함에 있어서 매우 효율적이지 못하다. 이 논문에서는 시계열에 있어서 예측 모델을 이용하여 미래의 값을 예측한다. 다음 DFT(Discrete Fourier Transform)을 이용하여 변환한 후 R*-tree를 구성하고, 새로운 값이 입력될 때마다 신속하게 유사성 시계열들을 찾아서 응답하는 연속 범위 질의 과정과 시스템 구조에 대해 제안한다.

  • PDF

미세먼지 예측 성능 개선을 위한 CNN-LSTM 결합 방법 (CNN-LSTM Combination Method for Improving Particular Matter Contamination (PM2.5) Prediction Accuracy)

  • 황철현;신강욱
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.57-64
    • /
    • 2020
  • 최근 IoT 센서의 확산과 빅데이터, 인공지능 관련 기술의 발전으로 인해 미세먼지 오염도에 대한 시계열 예측 관련 연구가 활발하게 진행되고 있다. 하지만 미세먼지 오염도를 나타내는 데이터가 급격히 변하는 특성(Extreme)을 가지고 있어 기존의 시계열 예측방법으로는 현장에서 사용할 수 있는 수준의 정확도를 내지 못하고 있다. 이 논문에서는 LSTM을 활용하여 미세먼지 오염도를 예측할 때 CNN을 통한 환경상황을 분류한 결과를 반영하는 방법을 제안한다. 이 방법은 LSTM과 CNN이 독립적이지만 인터페이스를 통해 하나의 네트워크로 통합되기 때문에, 응용 LSTM보다 이해하기 쉽다. Beijing PM2.5 데이터를 활용한 제안 방법의 검증 실험에서 예측 정확도와 변화 시기에 대한 예측력이 다양한 실험 case에서 일관되게 향상된 결과를 보였다.

기온 데이터를 반영한 전력수요 예측 딥러닝 모델 (Electric Power Demand Prediction Using Deep Learning Model with Temperature Data)

  • 윤협상;정석봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권7호
    • /
    • pp.307-314
    • /
    • 2022
  • 최근 전력수요를 예측하기 위해 통계기반 시계열 분석 기법을 대체하기 위해 딥러닝 기법을 활용한 연구가 활발히 진행되고 있다. 딥러닝 기반 전력수요 예측 연구 결과를 분석한 결과, LSTM 기반 예측 모델의 성능이 우수한 것으로 규명되었으나 장기간의 지역 범위 전력수요 예측에 대해 LSTM 기반 모델의 성능이 충분하지 않음을 확인할 수 있다. 본 연구에서는 기온 데이터를 반영하여 24시간 이전에 전력수요를 예측하는 WaveNet 기반 딥러닝 모델을 개발하여, 실제 사용하고 있는 통계적 시계열 예측 기법의 정확도(MAPE 값 2%)보다 우수한 예측 성능을 달성하는 모델을 개발하고자 한다. 먼저 WaveNet의 핵심 구조인 팽창인과 1차원 합성곱 신경망 구조를 소개하고, 전력수요와 기온 데이터를 입력값으로 모델에 주입하기 위한 데이터 전처리 과정을 제시한다. 다음으로, 개선된 WaveNet 모델을 학습하고 검증하는 방법을 제시한다. 성능 비교 결과, WaveNet 기반 모델에 기온 데이터를 반영한 방법은 전체 검증데이터에 대해 MAPE 값 1.33%를 달성하였고, 동일한 구조의 모델에서 기온 데이터를 반영하지 않는 것(MAPE 값 2.31%)보다 우수한 전력수요 예측 결과를 나타내고 있음을 확인할 수 있다.