• Title/Summary/Keyword: 시계열 데이터 예측

Search Result 539, Processing Time 0.031 seconds

A Benchmark of Hardware Acceleration Technology for Real-time Simulation in Smart Farm (CUDA vs OpenCL) (스마트 시설환경 실시간 시뮬레이션을 위한 하드웨어 가속 기술 분석)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.160-160
    • /
    • 2017
  • 자동화 기술을 통한 한국형 스마트팜의 발전이 비약적으로 이루어지고 있는 가운데 무인화를 위한 지능적인 스마트 시설환경 관찰 및 분석에 대한 요구가 점점 증가 하고 있다. 스마트 시설환경에서 취득 가능한 시계열 데이터는 온도, 습도, 조도, CO2, 토양 수분, 환기량 등 다양하다. 시스템의 경계가 명확함에도 해당 속성의 특성상 타임도메인과 공간도메인 상에서 정확한 추정 또는 예측이 난해하다. 시설 환경에 접목이 증가하고 있는 지능형 관리 기술 구현을 위해선 시계열 공간 데이터에 대한 신속하고 정확한 정량화 기술이 필수적이라 할 수 있다. 이러한 기술적인 요구사항을 해결하고자 시도되는 다양한 방법 중에서 공간 분해능 향상을 위한 다지점 계측 메트릭스를 실험적으로 구성하였다. $50m{\times}100m$의 단면적인 연동 딸기 온실을 대상으로 $3{\times}3{\times}3$의 3차원 환경 인자 계측 매트릭스를 설치하였다. 1 Hz의 주기로 4가지 환경인자(온도, 습도, 조도, CO2)를 계측하였으며, 계측 하는 시점과 동시에 병렬적으로 공간통계법을 이용하여 미지의 지점에 대한 환경 인자들을 실시간으로 추정하였다. 선행적으로 50 cm 공간 분해능에 대응하기 위하여 Kriging interpolation법을 횡단면에 대하여 분석한 후 다시 종단면에 대하여 분석하였다. 3 Ghz에 해당하는 연산 능력을 보유한 컴퓨터에서 1초 동안 획득한 데이터에 대한 분석을 마치는데 소요되는 시간이 15초 내외로 나타났다. 이는 해당 알고리즘의 매우 높은 시간 복잡도(Order of $O=O^3$)에 기인하는 것으로 다양한 시설 환경의 관리 방법론에 적절히 대응하기에 한계가 있다 할 수 있다. 실시간으로 시간 복잡도가 높은 연산을 수행하기 위한 기술적인 과제를 해결하고자, 근래에 관심이 증가하고 있는 NVIDIA 사에서 제공하는 CUDA 엔진과 Apple사의 제안을 시작으로 하여 공개 소프트웨어 개발 컨소시엄인 크로노스 그룹에서 제공하는 OpenCL 엔진을 비교 분석하였다. CUDA 엔진은 GPU(Graphics Processing Unit)에서 정보 분석 프로그램의 연산 집약적인 부분만을 담당하여 신속한 결과를 산출할 수 있는 라이브러리이며 해당 하드웨어를 구비하였을 때 사용이 가능하다. 반면, OpenCL은 CUDA 엔진이 특정 하드웨어에서 구동이 되는 한계를 극복하고자 하드웨어에 비의존적인 라이브러리를 제공하는 것이 다르며 클러스터링 기술과 연계를 통해 낮은 하드웨어 성능으로 인한 단점을 극복하고자 하였다. 본 연구에서는 CUDA 8.0(https://developer.nvidia.com/cuda-downloads)버전과 Pascal Titan X(NVIDIA, CA, USA)를 사용한 방법과 OpenCL 1.2(https://www.khronos.org/opencl/)버전과 Samsung Exynos5422 칩을 장착한 ODROID-XU4(Hardkernel, AnYang, Korea)를 사용한 방법을 비교 분석하였다. 50 cm의 공간 분해능에 대응하기 위한 4차원 행렬($100{\times}200{\times}5{\times}4$)에 대하여 정수 지수화를 위한 Quantization을 거쳐 CUDA 엔진과 OpenCL 엔진을 적용한 비교한 결과, CUDA 엔진은 1초 내외, OpenCL 엔진의 경우 5초 내외의 연산 속도를 보였다. CUDA 엔진의 경우 비용측면에서 약 10배, 전력 소모 측면에서 20배 이상 소요되었다. 따라서 우선적으로 OpenCL 엔진 기반 하드웨어 가속 기술 최적화 연구를 통해 스마트 시설환경 실시간 시뮬레이션 기술 도입을 위한 기술적 과제를 풀어갈 것이다.

  • PDF

Comparing Monthly Precipitation Predictions Using Time Series Analysis with Deep Learning Models (시계열 분석 및 딥러닝 모형을 활용한 월 강수량 예측 비교)

  • Chung, Yeon-Ji;Kim, Min-Ki;Um, Myoung-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.443-463
    • /
    • 2024
  • This study sought to improve the accuracy of precipitation prediction by utilizing monthly precipitation data for each region over the past 30 years. Using statistical models (ARIMA, SARIMA) and deep learning models (LSTM, GBM), we learned monthly precipitation data from 1983 to 2012 in Gangneung, Gwangju, Daegu, Daejeon, Busan, Seoul, Jeju, and Chuncheon. Based on this, monthly precipitation was predicted for 10 years from 2013 to 2022. As a result of the prediction, most models accurately predicted the precipitation trend, but showed a tendency to underpredict the actual precipitation. To solve these problems, appropriate models were selected for each region and season. The LSTM model showed suitable results in Gangneung, Gwangju, Daegu, Daejeon, Busan, Seoul, Jeju, and Chuncheon. When comparing forecasting power by season, the SARIMA model showed particularly suitable forecasting performance in winter in Gangneung, Gwangju, Daegu, Daejeon, Seoul, and Chuncheon. Additionally, the LSTM model showed higher performance than other models in the summer when precipitation is concentrated. In conclusion, closely analyzing regional and seasonal precipitation patterns and selecting the optimal prediction model based on this plays a critical role in increasing the accuracy of precipitation prediction.

Application of ISMN method for quality control of soil moisture data (토양수분 측정자료의 품질관리를 위한 ISMN 방식 적용)

  • Shin, Hyung Jin;Lee, Jae Nam;Hwang, Seon Ah;Ok, Jung hun;Lee, Ki Won;Park, Chan Gi;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.254-254
    • /
    • 2022
  • 밭 용수관리 및 가뭄 대응을 위한 토양수분 실측자료의 품질관리가 필수적으로 수행되어야 한다. 토양수분 자료의 체계적인 유지관리를 위해 국제 토양수분 네트워크(International Soil Moisture Network; ISMN)가 설립되었고, 전세계 1,400여개 지점의 토양수분량 자료의 품질관리하고 있다. ISMN 품질관리 방식은 토양특성, 강우에 대한 반응, 토양온도, 시계열특성을 이용한다. 지표면 최상 토층에 저장되어있는 수분인 토양수분은 기후 예측, 홍수 예보, 농업가뭄평가, 수자원 관리, 온실가스 산정, 인프라 보전, 수인성 전염병 모델링 등 다양한 분야에 활용될 수 있다(Dorigo et al., 2011). 본 연구에서는 FDR(Frequency Domain Reflectometry) 기기를 이용한 토양수분 측정자료의 품질관리를 위해 ISMN에서 제시한 총6개의 단계별 품질관리 체계를 적용하였다. 단계는 1) 토양수분이 0 m3m-3보다 작은지, 2) 또는 0.6 m3m-3보다 큰지, 3) 토양수분값이 공극률보다 큰지, 4) 토양온도가 영하인지, 5) 토양수분이 강우 이벤트 없이 증가하는지, 그리고 5) 토양수분 시계열 자료에 spike 가 있는지 6) break나 plateau가 있는지를 검사하여 Quality Flag를 설정하였다. 이를 기반으로 토양수분 데이터 자동 프로그램을 개발하여 이상치를 보정하였다. 향후, ISMN의 Quality Flag (QF1-QF10)를 적용하여 모니터링 자료의 품질관리 자동 프로그램을 개발하고자 한다.

  • PDF

Short-term Power Load Forecasting using Time Pattern for u-City Application (u-City응용에서의 시간 패턴을 이용한 단기 전력 부하 예측)

  • Park, Seong-Seung;Shon, Ho-Sun;Lee, Dong-Gyu;Ji, Eun-Mi;Kim, Hi-Seok;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.177-181
    • /
    • 2009
  • Developing u-Public facilities for application u-City is to combine both the state-of-the art of the construction and ubiquitous computing and must be flexibly comprised of the facilities for the basic service of the building such as air conditioning, heating, lighting and electric equipments to materialize a new format of spatial planning and the public facilities inside or outside. Accordingly, in this paper we suggested the time pattern system for predicting the most basic power system loads for the basic service. To application the tim e pattern we applied SOM algorithm and k-means method and then clustered the data each weekday and each time respectively. The performance evaluation results of suggestion system showed that the forecasting system better the ARIMA model than the exponential smoothing method. It has been assumed that the plan for power supply depending on demand and system operation could be performed efficiently by means of using such power load forecasting.

  • PDF

Prediction of Dietary Knowledge using Multiple Regression Analysis for Preventing Stomach Diseases (위장질환 예방을 위한 다중회귀분석을 이용한 식이지식 예측)

  • Choi, So-Young;Kim, Joo-Chang;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.1-6
    • /
    • 2019
  • Modern society is undergoing nutritional imbalance according to the diet as the number of one person increases. This is increasing the incidence of chronic diseases such as gastrointestinal diseases and digestive diseases. This study suggests the prediction of dietary knowledge using multiple regression analysis for preventing chronic stomach diseases. The proposed method manages user's stomach diseases and dietary nutrition through the prediction of nutrition knowledge. It collects user's PHR through smart device and integrates in the health platform. The integrated data analyzes the dietary and activity of the user through multiple regression analysis. It predicts the required nutrients and provides services to users through applications. Therefore, it suggests recommended dietary components and consumed calories, appropriate dietary components based on the user's basal metabolism, and gastrointestinal levels. With the personalized health management, modern people can manage gastrointestinal diseases through a balanced diet.

A hidden Markov model for predicting global stock market index (은닉 마르코프 모델을 이용한 국가별 주가지수 예측)

  • Kang, Hajin;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.461-475
    • /
    • 2021
  • Hidden Markov model (HMM) is a statistical model in which the system consists of two elements, hidden states and observable results. HMM has been actively used in various fields, especially for time series data in the financial sector, since it has a variety of mathematical structures. Based on the HMM theory, this research is intended to apply the domestic KOSPI200 stock index as well as the prediction of global stock indexes such as NIKKEI225, HSI, S&P500 and FTSE100. In addition, we would like to compare and examine the differences in results between the HMM and support vector regression (SVR), which is frequently used to predict the stock price, due to recent developments in the artificial intelligence sector.

Passenger Demand Forecasting for Urban Air Mobility Preparation: Gimpo-Jeju Route Case Study (도심 항공 모빌리티 준비를 위한 승객 수요 예측 : 김포-제주 노선 사례 연구)

  • Jung-hoon Kim;Hee-duk Cho;Seon-mi Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.472-479
    • /
    • 2024
  • Half of the world's total population lives in cities, continuous urbanization is progressing, and the urban population is expected to exceed two-thirds of the total population by 2050. To resolve this phenomenon, the Korean government is focusing on building a new urban air mobility (UAM) industrial ecosystem. Airlines are also part of the UAM industry ecosystem and are preparing to improve efficiency in safe operations, passenger safety, aircraft operation efficiency, and punctuality. This study performs demand forecasting using time series data on the number of daily passengers on Korean Air's Gimpo to Jeju route from 2019 to 2023. For this purpose, statistical and machine learning models such as SARIMA, Prophet, CatBoost, and Random Forest are applied. Methods for effectively capturing passenger demand patterns were evaluated through various models, and the machine learning-based Random Forest model showed the best prediction results. The research results will present an optimal model for accurate demand forecasting in the aviation industry and provide basic information needed for operational planning and resource allocation.

Fundamental Study on Algorithm Development for Prediction of Smoke Spread Distance Based on Deep Learning (딥러닝 기반의 연기 확산거리 예측을 위한 알고리즘 개발 기초연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • This is a basic study on the development of deep learning-based algorithms to detect smoke before the smoke detector operates in the event of a ship fire, analyze and utilize the detected data, and support fire suppression and evacuation activities by predicting the spread of smoke before it spreads to remote areas. Proposed algorithms were reviewed in accordance with the following procedures. As a first step, smoke images obtained through fire simulation were applied to the YOLO (You Only Look Once) model, which is a deep learning-based object detection algorithm. The mean average precision (mAP) of the trained YOLO model was measured to be 98.71%, and smoke was detected at a processing speed of 9 frames per second (FPS). The second step was to estimate the spread of smoke using the coordinates of the boundary box, from which was utilized to extract the smoke geometry from YOLO. This smoke geometry was then applied to the time series prediction algorithm, long short-term memory (LSTM). As a result, smoke spread data obtained from the coordinates of the boundary box between the estimated fire occurrence and 30 s were entered into the LSTM learning model to predict smoke spread data from 31 s to 90 s in the smoke image of a fast fire obtained from fire simulation. The average square root error between the estimated spread of smoke and its predicted value was 2.74.

Satellite-Based Cabbage and Radish Yield Prediction Using Deep Learning in Kangwon-do (딥러닝을 활용한 위성영상 기반의 강원도 지역의 배추와 무 수확량 예측)

  • Hyebin Park;Yejin Lee;Seonyoung Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1031-1042
    • /
    • 2023
  • In this study, a deep learning model was developed to predict the yield of cabbage and radish, one of the five major supply and demand management vegetables, using satellite images of Landsat 8. To predict the yield of cabbage and radish in Gangwon-do from 2015 to 2020, satellite images from June to September, the growing period of cabbage and radish, were used. Normalized difference vegetation index, enhanced vegetation index, lead area index, and land surface temperature were employed in this study as input data for the yield model. Crop yields can be effectively predicted using satellite images because satellites collect continuous spatiotemporal data on the global environment. Based on the model developed previous study, a model designed for input data was proposed in this study. Using time series satellite images, convolutional neural network, a deep learning model, was used to predict crop yield. Landsat 8 provides images every 16 days, but it is difficult to acquire images especially in summer due to the influence of weather such as clouds. As a result, yield prediction was conducted by splitting June to July into one part and August to September into two. Yield prediction was performed using a machine learning approach and reference models , and modeling performance was compared. The model's performance and early predictability were assessed using year-by-year cross-validation and early prediction. The findings of this study could be applied as basic studies to predict the yield of field crops in Korea.

Cuffless Blood Pressure Estimation Based on a Convolutional Neural Network using PPG and ECG Signals for Portable or Wearable Blood Pressure Devices (휴대용 및 웨어러블 측정기를 위한 ECG와 PPG 신호를 활용한 합성곱 신경망 알고리즘 기반의 비가압식 혈압 추정 방법)

  • Cho, Jinwoo;Choi, Ahyoung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.3
    • /
    • pp.1-10
    • /
    • 2020
  • In this paper, we propose an algorithm for estimating blood pressure using ECG (Electrocardiogram) and PPG (Photoplethysmography) signals. To estimate the BP (Blood pressure), we generate a periodic input signal, remove the noise according to the differential and threshold methods, and then estimate the systolic and diastolic blood pressures based on the convolutional neural network. We used 49 patient data of 3.1GB in the MIMIC database. As a result, it was found that the prediction error (RMSE) of systolic BP was 5.80mmHg, and the prediction error of diastolic BP was 2.78mmHg. This result confirms that the performance of class A is satisfied with the existing BP monitor evaluation method proposed by the British High Blood Pressure Association.