• Title/Summary/Keyword: 시계열 데이터 예측

Search Result 539, Processing Time 0.024 seconds

A Study on Anomaly Detection Neural Network Model Based On Flow Direction/Velocity Data (유향/유속 데이터 중심의 이상 검출 신경망 모델)

  • Seong-Kil Hyun;Dong-Young Yoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.555-557
    • /
    • 2023
  • 해양의 영향을 많이 받는 우리나라의 지리적 특성상 해양 상황은 산업 및 생업과 밀접한 관계가 있다. OPEN API 를 이용하여 유향/유속, 조위등 해양 환경관련 실시간 시계열 데이터를 수집한 후 2 차원 공간에 표시하여 순환 신경망 모델을 이용하여 학습한다. 학습된 모델을 실제 데이터에 적용하여 파랑을 예측한다. 시계열의 성격이 있고 공간상에 표시할 수 있는 데이터라면 본 논문에서 제시한 체계를 통해 예측할 수 있을 것이라 예상한다.

A Study on Performance Management System Using a Realtime Network Traffic Prediction (실시간 네트워크 트래픽의 예측을 이용한 성능관리 시스템 연구)

  • Jung, Sang-Joon;Choi, Hyck-Su;Kwon, Young-Hun;Leem, In-Teak;Kwon, Eun-Young;Kim, Chong-Gun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04b
    • /
    • pp.1317-1320
    • /
    • 2002
  • 네트워크에서 실시간으로 통신 트래픽의 변화량을 감시하고 시계열 분석을 이용해 변화량의 추이를 모형화한다. 트래픽의 변화량을 모형화하게 되면 트래픽에 대한 예측이 가능하게 되므로 트래픽 예측을 이용하여 성능관리를 수행할 수 있다. 본 연구에서는 실시간 트래픽을 이용한 성능관리 시스템에 대해 다룬다. 기존의 성능관리 시스템은 SNMP를 이용한 MIB-II 정보를 바탕으로 하는 분석 방법으로 이는 누적 데이터를 기본으로 하는 관리 방법으로 이상 징후의 판단이 즉각적이지 않았고 또한 모니터링을 수행하기 위해서는 통신 트래픽의 증가를 가져왔다. 대부분의 성능관리 시스템은 단순히 망에서의 트래픽이나 에러율 등을 관리자에게 보고하는 데 그치고 있어 능동적인 성능관리가 이루어지지 않는다. 따라서, 본 논문에서는 실시간 트래픽 감시를 위해 네트워크에 들어오거나 나가는 트래픽의 양을 측정하여 분석하고, 이 정보를 바탕으로 특정 시점 이후의 트래픽 추이를 모형화하여 미래의 트래픽 양을 예측하고, 예측된 정보를 바탕으로 하는 성능관리 시스템에 대해 연구한다. 예측 알고리즘으로는 시계열 분석을 통해 시계열 자료의 예측을 가능하게 하는 알고리즘으로 설계한다. 이 성능관리시스템을 바탕으로 망 관리자가 전체 통신 네트워크의 부하 상태를 예측하여 신속하게 대응을 할 수 있다.

  • PDF

Stock Prediction Model based on Bidirectional LSTM Recurrent Neural Network (양방향 LSTM 순환신경망 기반 주가예측모델)

  • Joo, Il-Taeck;Choi, Seung-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.204-208
    • /
    • 2018
  • In this paper, we proposed and evaluated the time series deep learning prediction model for learning fluctuation pattern of stock price. Recurrent neural networks, which can store previous information in the hidden layer, are suitable for the stock price prediction model, which is time series data. In order to maintain the long - term dependency by solving the gradient vanish problem in the recurrent neural network, we use LSTM with small memory inside the recurrent neural network. Furthermore, we proposed the stock price prediction model using bidirectional LSTM recurrent neural network in which the hidden layer is added in the reverse direction of the data flow for solving the limitation of the tendency of learning only based on the immediately preceding pattern of the recurrent neural network. In this experiment, we used the Tensorflow to learn the proposed stock price prediction model with stock price and trading volume input. In order to evaluate the performance of the stock price prediction, the mean square root error between the real stock price and the predicted stock price was obtained. As a result, the stock price prediction model using bidirectional LSTM recurrent neural network has improved prediction accuracy compared with unidirectional LSTM recurrent neural network.

Clustering and classification to characterize daily electricity demand (시간단위 전력사용량 시계열 패턴의 군집 및 분류분석)

  • Park, Dain;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.395-406
    • /
    • 2017
  • The purpose of this study is to identify the pattern of daily electricity demand through clustering and classification. The hourly data was collected by KPS (Korea Power Exchange) between 2008 and 2012. The time trend was eliminated for conducting the pattern of daily electricity demand because electricity demand data is times series data. We have considered k-means clustering, Gaussian mixture model clustering, and functional clustering in order to find the optimal clustering method. The classification analysis was conducted to understand the relationship between external factors, day of the week, holiday, and weather. Data was divided into training data and test data. Training data consisted of external factors and clustered number between 2008 and 2011. Test data was daily data of external factors in 2012. Decision tree, random forest, Support vector machine, and Naive Bayes were used. As a result, Gaussian model based clustering and random forest showed the best prediction performance when the number of cluster was 8.

Development of Forecasting System for Condition of Ship Engine (선박 엔진 상태 예측 시스템 개발)

  • Yang, Jae Gun;Lee, Sang Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.179-180
    • /
    • 2015
  • 운항하는 선박의 특성상 미래 상태를 반영한 예방정비는 선박의 안전한 운항과 운영비용 절감에 중요한 요인이다. 이에 본 논문에서는 선박 엔진의 세 가지 주요 베어링의 마모 상태를 모니터링하고 앞으로의 마모 정도를 예측하는 시스템을 개발하였다. 이 시스템은 현재의 실린더 하사점 레벨 데이터를 기반으로 앞으로의 실린더 하사점 레벨을 예측한다. 실험에 적용한 실린더 하사점 레벨 데이터는 테스트 지그를 제작하여 발생시켰고, 이 장치를 통해서 취득한 데이터를 이용하여 선박 엔진의 미래 상태를 예측하였다.

  • PDF

Concrete Crack Prediction Model Combining CNN and LSTM (CNN과 LSTM을 결합한 콘크리트 균열 예측 모델)

  • Dong Eun Lee;Sung Jin Kim;Young Hyun Yoon;Jai Soon Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.73-74
    • /
    • 2023
  • 본 논문은 교량 안전에 관련하여 CNN과 LSTM을 결합한 모델을 사용해 콘크리트 균열을 미리 에측한다. 이미지 데이터는 CNN을 통해 처리되고, 시계열 데이러는 LSTM을 통해 처리가 된다. 훈련된 모델을 사용해 새로운 이미지와 시계열 데이터에 대한 균열 예측을 수행한다.

  • PDF

Electric Vehicle Technology Trends Forecast Research Using the Paper and Patent Data (논문 및 특허 데이터를 활용한 전기자동차 기술 동향 예측 연구)

  • Gu, Ja-Wook;Lee, Jong-Ho;Chung, Myoung-Sug;Lee, Joo-yeoun
    • Journal of Digital Convergence
    • /
    • v.15 no.2
    • /
    • pp.165-172
    • /
    • 2017
  • In this paper, we analyze the research / technology trends of electric vehicles from 2001 to 2014, through keyword analysis using paper data published in SCIE or SSCI Journal on electric vehicles, time series analysis using patent data by IPC, and network analysis using nodeXL. also we predicted promising technologies of electric vehicles using one of the prediction methods, weighted moving average method. As a result of this study, battery technology among the electric vehicle component technologies appeared as a promising technology.

Design of a 1-D CRNN Model for Prediction of Fine Dust Risk Level (미세먼지 위험 단계 예측을 위한 1-D CRNN 모델 설계)

  • Lee, Ki-Hyeok;Hwang, Woo-Sung;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.215-220
    • /
    • 2021
  • In order to reduce the harmful effects on the human body caused by the recent increase in the generation of fine dust in Korea, there is a need for technology to help predict the level of fine dust and take precautions. In this paper, we propose a 1D Convolutional-Recurrent Neural Network (1-D CRNN) model to predict the level of fine dust in Korea. The proposed model is a structure that combines the CNN and the RNN, and uses domestic and foreign fine dust, wind direction, and wind speed data for data prediction. The proposed model achieved an accuracy of about 76%(Partial up to 84%). The proposed model aims to data prediction model for time series data sets that need to consider various data in the future.

An Analysis of the Estimated Number of High School Students between 2016 and 2020 by Time Series Analysis (시계열 분석을 통한 시도별 고등학교 학생 수 예측)

  • Lim, Seong-Bum;Park, Sun-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.735-748
    • /
    • 2016
  • Since the number of student is regarded as the fundamental basis to calculate the future allocation of employed teachers, it needs to be systematically estimated based on statistical data. In order to achieve this purpose, the number of high school students is projected following the assumption that the teacher-student ratio of Korea should be adjusted to the level of OECD to improve the quality of education. Hence, this paper introduced the projection methods by time series model. To predict the number of high school students and error estimation, various models were adopted.

Development of Traffic Speed Prediction Model Reflecting Spatio-temporal Impact based on Deep Neural Network (시공간적 영향력을 반영한 딥러닝 기반의 통행속도 예측 모형 개발)

  • Kim, Youngchan;Kim, Junwon;Han, Yohee;Kim, Jongjun;Hwang, Jewoong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • With the advent of the fourth industrial revolution era, there has been a growing interest in deep learning using big data, and studies using deep learning have been actively conducted in various fields. In the transportation sector, there are many advantages to using deep learning in research as much as using deep traffic big data. In this study, a short -term travel speed prediction model using LSTM, a deep learning technique, was constructed to predict the travel speed. The LSTM model suitable for time series prediction was selected considering that the travel speed data, which is used for prediction, is time series data. In order to predict the travel speed more precisely, we constructed a model that reflects both temporal and spatial effects. The model is a short-term prediction model that predicts after one hour. For the analysis data, the 5minute travel speed collected from the Seoul Transportation Information Center was used, and the analysis section was selected as a part of Gangnam where traffic was congested.