주가 예측은 금융시장에서 중요하게 다뤄지고 있는 주제이지만 영향을 미칠 수 있는 다수의 요소들로 인해 어려운 주제로 고려되고 있다. 본 논문에서는 시계열 예측 모델 (LSTM, GRU)과 데이터의 시간적 의존성을 고려하지 않는 비 시계열 예측 모델 (RF, SVR, KNN, LGBM)을 주가 예측에 적용하여 성능을 비교하고 분석하였다. 또한 주가 데이터와 기술적 분석 보조지표, 재무제표 지표, 매수매도 지표, 공매도, 외국인 지표 등 다양한 데이터를 조합 및 활용하여 최적의 예측 요소를 찾아내고 업종별로 주가 예측에 영향을 미치는 주요 요소들을 분석했다. 하이퍼파라미터 최적화 과정을 통해 알고리즘별 예측 성능을 향상 시키는 과정도 진행하여 성능에 영향을 주는 요인을 분석하였다. 변수 선택과 하이퍼 파라미터 최적화 과정을 거친 결과, 시계열 예측 알고리즘인 GRU, 그리고 LSTM+GRU의 예측 정확도가 가장 높은 것으로 나타났다.
COVID-19 (Coronavirus disease 2019) 확산으로 2020년 초부터 도시철도 등 대중교통수단의 이용량이 크게 변동하였다. 이에 본 연구에서는 COVID-19 이전과 COVID-19 확산 이후, 3년 동안 도시철도 역별 일별 시계열 자료를 수집하여 DTW (Dynamic Time Warping) 거리법을 통해 시계열 군집분석 유사도를 평가하여 군집 별 회귀 중앙치를 도출하고, COVID-19 등 여러 외부 사건이 이용객 수의 변동에 미치는 영향을 시계열 충격 탐지 함수(Outlier Detection)로 진단하였다. 또한 도시철도 역의 군집 별 이용 특성을 분석하고 또한 외부 충격에 따른 승객량의 변동을 파악하였다. 향후 COVID-19 재확산 시 이용량의 유지와 회복에 대한 방안을 검토하는 데 목적을 두었다.
1970년대부터 집중 건설 된 우리나라의 다목적댐, 홍수조절댐, 용수전용댐 등의 대형 국가 수자원시설물들의 '고령화'가 급속히 진행되어 수리구조물에 대한 안정성을 주기적으로 파악할 수 있는 정밀안전모니터링 체계 구축이 시급한 시점이다. 주기적인 정밀안전모니터링 방법들 중에는 위성 등을 활용한 원격관측 기술들이 최근 시도되고 있다. 위성 영상레이더(SAR; Synthetic Aperture Radar)는 마이크로파 대역의 전자기파를 송·수신하는 능동센서로 날씨 및 주·야간에 영향을 받지 않고 지표면 관측이 가능한 장점이 있다. 특히, 고정산란체 영상레이더 간섭(PSInSAR; Permanent Scatterer Interferometry SAR)기법은 영상레이더 영상에서 긴밀도(coherence)가 상대적으로 높은 수자원시설물과 같은 고정산란체의 위상(phase) 정보를 이용하여 mm급의 측정민감도로 시계열 변위 분석이 가능하다. 또한, 여러 장의 InSAR 영상을 생성하였기 때문에 DEM 오차, 위성궤도 오차, 대기 성분에 의한 지연 오차 등을 보다 정밀하게 제거할 수 있는 장점이 있다 본 연구에서는 국내 중대형 수자원시설물의 정밀안전모니터링을 위하여 고정산란체 영상레이더 간섭 기법을 영암금호방조제, 영주댐, 소양강댐 등에 적용하여 시계열 변위 분석을 수행하였다. 2014년 11월부터 2022년 3월(현재)까지 획득된 Sentinel-1 SLC(Single Look Complex) 위성자료의 상승(Ascending) 궤도 126장 및 하강(Descending)궤도 187장을 각각 활용하였다. 두 위성궤도를 모두 활용하여 수직, 수평 변위 등 3차원 분석을 수행하였으며, 특히 소양강댐 GPS 관측 자료와 정확도 검증에서 연평균 2mm의 RMSE를 보였다. 이를 통해 위성 원격탐사 기술로도 댐, 보, 방조제와 같은 수자원시설물에 대한 시계열 변위 분석을 통한 댐 안전관리가 가능함을 보여주고 있다. 2025년 발사될 국내 C-밴드 SAR 탑재 수자원위성 개발을 통해 한반도 재방문주기를 단축시킴으로써, 한반도 전역의 수자원시설물 정밀안전진단체계 구축이 가능할 것으로 기대된다.
인류의 출현과 함께 시작된 역사에는 기록이라는 수단이 있기에 현재에 사는 우리는 데이터를 통해 과거를 확인할 수 있다. 생성되는 데이터는 일정 순간에만 발생하여 저장될 수도 있지만, 과거로부터 현재까지 일정 시간 간격 동안 계속해서 생성될 뿐만 아니라 다가올 미래에도 발생함으로써 이를 활용하여 예측하는 것 또한 중요한 작업이다. 본 논문은 수많은 데이터 중에서 시계열 데이터의 활용 동향을 알아보기 위해서 시계열 데이터의 개념에서부터 머신러닝 분야에서 시계열 데이터 분석에 주로 사용되는 Recurrent Neural Network와 Long-Short Term Memory에 대해 분석하고, 이런 모델들을 활용한 사례의 조사를 통해 의료 진단, 주식 시세 분석, 기후 예측 등 다양한 분야에 활용되어 높은 예측 결과를 보이고 있음을 확인하였고, 이를 바탕으로 향후 활용방안에 대하여 모색해본다.
많은 경제 시계열 자료 중에서 주가는 국내외 경제상황은 물론 정부정책 등 시장 외적인 영향에 가장 민감하게 반응한다. 하지만, 지금까지의 주가예측에 있어서는 이러한 외부의 영향, 즉 개입(Intervention)이 발생했을 때 주가의 변동에 능동적으로 대처하는 모형이 부재하였다. 실제로 이러한 개입사실을 예측모형에 반영하지 않는다면, 주가예측 있어 그 예측력을 따진다는 것은 무의미하다고 판단된다. 따라서, 개입시점을 발견하고, 이 개입효과를 측정하여 이를 모형에 반영한다면 좋은 예측결과를 얻을 수 있을 것이다. 이 연구에서는 이상점 탐지절차를 이용하여 개입 시점을 발견하고 개입의 효과가 개입시점에만 영향을 주는 모형과 효과가 일정기간 지속되는 모형으로 두 개의 개입시계열모형을 구축하고, 이러한 두 모형의 예측성과와 인공신경망모형을 이용한 예측성과를 비교하였다. 초단기예측(개입 직후 예측)에 있어서 개입의 효과가 지속되는 경우에는 개입시계열이 인공신경망보다 좋을 결과 를 나타내긴 했지만 그 차이는 크지 않았으며, 개입의 효과가 시점에만 영향을 준 경우에는 인공신경망의 결과가 더 우수한 것으로 나타났다. 단기예측(개입 후 20 일후의 예측)에 있어서는 개입 효과의 지속여부에 상관없이 인공신경망이 개입시계열모형보다 우수한 것으로 나타났다.
Communications for Statistical Applications and Methods
/
제18권1호
/
pp.13-21
/
2011
본 논문에서는 계절성을 가지는 다변량 비정상 시계열자료의 분석 방법을 연구한다. 이를 위하여, 3가지의 다변량 시계열분석 모형(계절형 공적분 모형, 계절형 가변수를 가지는 비계절형 공적분 모형, 차분을 이용한 벡터자기회귀모형)을 고려하고, 한국의 실제 거시경제 자료를 이용하여 3가지 모형의 예측력을 비교한다. 공적분 모형은 단기적 예측에서 우수하였고, 장기적 예측에서는 차분을 이용한 벡터자기회귀모형이 우수하였다.
2016년말 우리나라의 지하수 관측망은 국가지하수관측망, 지역지하수관측망, 수질전용측정망, 해수침투 관측망 등 다양한 목적하에 약 5,790개가 운영되고 있으며, 평균적으로 약 10년 정도의 관측 기간을 보유하고 있다. 이들 중에서 일 1회 이상 자동관측이 이루어지는 679개를 대상으로 지하수위 시계열자료의 특성을 분석하였다. ARIMA 분석 결과, AR(p) 모델은 전체의 56.8%인 386개, MA(q) 모델은 90.7%인 616개, Integration(d) 모델은 96.5%인 655개로 나타났다. AR(p) 모델중 가장 많은 경우를 보인 것은 AR(1), AR(2), AR(3) 등의 순이며, MA(q) 모델중 가장 많은 경우를 보인 것은 MA(2), MA(1), MA(3) 등의 순이며, Integration(d) 모델은 I(1), I(2)의 순으로 나타났다. AR(1) 모델이 가장 많은 것은 강우에 대한 지하수위의 교차상관의 lag time이 1 ~ 2일인 경우가 가장 많으므로 이전 시점의 지하수위에 의하여 현재 지하수위가 결정된다는 점을 의미한다. Integration이 많이 나타난 이유는 주기적 또는 지속적인 변동성이 지하수위에 나타나고 있음을 보여준다. 지하수위의 시계열 특성의 분류 및 그 원인을 평가하여 각 관측소별 지하수위 변동성을 정의함으로써 추후 지하수위 시계열자료의 분석 목적에 부합하는 자료 선별에 기여하고자 한다.
최근 들어 시계열 자료 분석에서 관측된 각 시점에서의 관측치의 분산을 서로 다른 분산(조건부 이분산성)을 따른다고 가정하고, 이를 분석하는 모형(ARCH, GARCH, EGARCH, IGARCH 등)들이 옵션 가격 분석이나 환율 변화 등 경제적 시계열 자료의 예측 모형을 위하여 활발히 연구되고 있다. 본 논문에서는 한국의 KOSPI 데이터 (1999년 1월 4일 $\sim$ 2003년 12월 30일, 총 1227일)를 바탕으로 조건부 우도함수 모수 추정 방법을 이용한 GARCH(1,1), IGARCH(1,1), EGARCH(1,1) 모형에 KOSPI 자료를 적합 시켜 각 모형들의 성능을 비교하여 보았다.
유역에서의 강우사상에 따른 일련의 수문학적 과정의 규명과 수자원의 효율적 관리를 위한 토양함수량을 산정하는데 토양수분의 시공간적 분포특성을 파악하는 것은 매우 중요하다. 연구유역은 경기도 파주시 적성면 설마리의 설마천 유역 내에 위치한 소유역이다. 대상유역의 정밀측량을 하여 수치고도모형(DEM)을 획득 하였다. 이 수치고도모형에 사용하여 수치지형분석을 통해 총 21지점을 선정하였다. 토양수분의 연직방향 변화를 알아보기 위해 각 지점의 10, 30, 60cm 깊이에 센서를 설치하여 토양수분을 측정하는 TDR (Time Domain Reflectometry)방식인 MiniTRASE를 이용하여 총 50채널을 통해 매 2시간 간격으로 토양수분의 변동을 관측하였다. 토양수분의 시공간적 분포특성을 분석하기 위해 획득된 자료를 바탕으로 시계열의 공간 분석 및 통계분석을 수행하였다. 토양수분 시계열에 대한 공간분석은 토양수분의 사면에서의 공간적인 분포가 사면의 지형적인 형상에 의해서 영향을 받는다는 것을 보여주고 있다. 그리고 통계분석을 통해 평균치의 표준편차가 대상 기간 동안 일정한 것으로 나타났고, 이는 대상사면에서의 토양수분 분포 특성이 기후나 식생의 변동성에 영향을 받지 않고, 지형이나 토질 같은 정적인 인자에 주로 영향을 받는다는 가설을 뒷받침한다. 이 결과는 토양수분의 시공간적 분포양상의 파악과 국내 사면에서의 수문기작들을 규명하는데 기여를 할 것으로 판단된다.
Journal of the Korean Data and Information Science Society
/
제27권6호
/
pp.1511-1523
/
2016
우리나라의 5대 강력범죄 (살인, 강도, 강간, 폭력, 절도) 발생의 증가추세는 우리나라의 사회, 경제적 요인의 변화 추세와 무관하지 않으며, 이와 관련한 논의는 여러 사회과학 연구에서 논의되어져왔으나 시계열 자료의 특성을 제대로 반영하지 않은 경우가 많다. 이에 본 연구에서는 강력범죄 변화의 추이를 살펴보고 그 통제 요인들에 관하여 논의하였다. 통제 요인들을 살펴봄에 있어 시간, 계절 및 순환과 같이 시계열 자료로써 갖는 내재적 요인들과 경제적, 사회변동 및 범죄통제에 관련한 외재적 요인들로 범주화 하여 고려하였다. 또한 시계열자료가 본질적으로 갖는 자기상관성을 반영한 모형 역시 고려하여 비교하였다. 이러한 다양한 시계열 모형들을 통하여 5대 강력범죄의 발생요인을 점검하는 한편 발생건수를 예측함으로써 강력 범죄에 대한 예방적 정책적 도움을 주고자 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.