본 논문의 목적은 퍼지 엔트로피를 이용하여 비선형신호를 예측하는 것이다. 이 방법은 분할된 여러 부 공간(subspace)에 대해 입력 데이터로부터 퍼지 엔트로피를 이용하여 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 바람직한 규칙베이스를 구성하도록 한 것이다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 역전파 알고리즘에 의해 적응되어진다. 또한 매개변수의 수를 줄이기 위하여 제어규칙의 결론부의 출력값은 신경망의 가중치로 구성하였다. 결국 퍼지 신경망의 복잡도를 줄일 수 있다. Mackey-Glass 시계열의 예측에 대한 컴퓨터 시뮬레이션을 통하여 본 논문에서 제안한 방법의 효율성을 입증하고, 제안된 방법을 EEG 생리신호 분석에 이용될 수 있다.
중독은 크게 매개체 자체가 중독성을 가진 매개성 중독과 매개체 자체가 중독성을 가진 것이 아니라 예민한 개인과 잠재된 어떤 행동과 결합하여 중독을 유발하는 유발성 중독으로 나눌 수 있다. 매개성 중독은 약물 중독, 알코올 중독과 주로 화학물질의 직접 적인 원인이 되어 중독현상을 일으킨다. 유발성 중독은 쇼핑 중독, 일 중독, 게임 중독, 인터넷 중독, TV중독, 도박 중독 등의 사이버 중독이 있다. 유발성 중독은 개인의 감수성의 문제로서 개인에 따른 편차가 존재한다. 본 논문에서는 전기 시스템의 R-L-C 직렬 회로와 기계 시스템의 Spring-Damper-Mass를 이용하여 등가적으로 동일한 2차원의 중독 모델을 제안한다. 제안한 중독 모델에 비선형 항을 추가하여 Duffing을 구성한 후 파라미터 변화에 의해 주기운동과 카오스 운동을 시계열과 위상공간으로 나타내었다. 또한 파라미터 중 통제계수의 변화에 의해 주기 운동은 중독 되기 전의 상태를 카오스 운동은 중독된 상태임을 확인하였다.
본 논문의 목적은 엘니뇨현상의 예측을 위한 확률모델의 개발과 그 응용에 있다. 이를 위해, 먼저 태평양 적도지역의 월평균 해면수온의 편차시계열을 기초로 하여 엘 니뇨 현상의 지속기간, 강도의 결정방법과 이 현상의 출현에 대한 판별방법을 제안하 였다. 다음으로 과거 40년(1951-1990) 자료의 편차시계열에 나타난 엘니뇨의 연변동 성, 주기성, 종속성 등 확률구조 및 통계적 특성을 파악하였고, 이 결과를 엘니뇨현상 의 예측을 위한 시계열 비선형확률모델을 유도하였는데 이용하였다. 마지막으로 유도 된 확률모델의 실제적용을 위한 통계절차를 제안하였다.
본 연구에서는 조건부 핵밀도함수와 CAFPE(Corrected Asymptotic Final Prediction Error) 차수결정 방법에 근거한 비매개변수적 비선형 자기회귀 (Nonlinear AutoRegressive, NAR) 모형을 소개하고 이를 SOI(Southern Oscillation Index)에 적용하였다. SOI 자료에 대해서 선형 AR 모형을 적용하였으나 잔차에 대한 검정결과 이분산성(heteroscedasticity)을 나타내었다. 또한 BDS(Brock-Dechert-Sheinkman) 검정에서 비선형성이 존재함을 확인하였다. 따라서 NAR 모형에 SOI 자료를 적용시켰다. CAFPE를 이용하여 가장 적합한 모형으로 지체 1, 2와 4가 선택되었으며 조건부 평균함수를 추정하여 SOI 자료를 모의한 결과 잔차에 대해서 정규성과 이분산성 가정이 Jarque-Bera 검정과 ARCH-LM 검정에서 각각 기각되었으며 또한 조건부 표준편차함수의 최적 차수로 3, 8과 9가 CAPFE를 통해 선택되었다. 조건부 평균함수와 표준편차함수를 모두 고려한 모형에 대한 잔차 검정 결과 잔차의 I.I.D 가정을 만족하였으며 특히, BDS 검정에서 신뢰구간 95%와 99%에서 모두 만족한 결과를 나타내었다. 마지막으로 전체의 15%에 해당하는 SOI 자료에 대해서 One-Step 예측을 수행하였으며 선형 모형에 비해 평균제곱예측오차가 7% 적게 나타났다. 따라서, NAR 모형은 여타의 매개변수적 방법과 달리 모형 선택에 있어 자유로우며 비선형성을 고려할 수 있는 모형으로서 SOI 자료와 같은 비선형 자료를 위한 모의방법으로 선형 모형에 비해 많은 장점을 가지고 있다.
수문순환 과정은 기상현상과 밀접한 관련을 가지고 서로 연관되어 있다. 이러한 연관성을 규명하여 수자원관리에 위험도를 감소시키려는 노력은 많은 분야에서 이루어지고 있으며, 주요 연구 주제가 되고 있다. 이러한 기상현상 중에서 가뭄은 여러 가지 요소가 복합되어 발생되는 것으로 알려지고 있으나 이를 설명하기에는 여전히 부족한 면이 존재한다. 가뭄을 발생시키는 몇 가지 가능한 원인으로는 E1 Nino-Southern Oscillation(ENSO)현상으로 잘 알려져 있는 비정상적인 해수면 온도의 변화나 기후 시스템의 비선형적 거동을 들 수 있다. 특히, 기후 시스템은 대개 경년 변화(inter-annual variability) 및 10년 이상의 주기(decadal variability) 특성을 가지고 있으며 가뭄 또한 경년변화의 주기 특성을 나타내고 있는 것으로 알려지고 있다. 이러한 관점에서 수문시계열을 특정 주파수(frequency)에서 고립시킨 후, 분석이 가능한 분해방법(decomposition method)을 통해 보다 해석적으로 접근하는 것이 가능하다. 이를 위해 본 연구에서는 Wavelet Transform분석을 도입하였으며 통계적으로 유의한 성분을 시계열로부터 추출하여 가뭄과 기상인자와의 변동성 분석을 실시하였다.
본 연구는 혼합주기모형을 해운경기 예측에 활용하기 위해 기존의 비선형 장기균형관계분석에서 통계적으로 유의한 요인들을 단기모형에 적용하였다. 가장 일반적인 단일변수(univariate) AR(1) 모형과 혼합주기모형으로부터 각각 표본외 예측을 실시하여 예측오차와 비교한 결과 혼합주기모형의 예측력이 AR(1) 모형보다 향상됨을 확인하였다. 이러한 실증분석은 새로운 고차원 혼합주기모형이 해운경기변동 예측에 유용한 모형임을 의미하며, 즉, 최근 다변수 시계열 자료가 주로 장기균형관계(long-run equilibrium)를 대상으로 하고 있는데, 고차주기와 같은 정보를 분석에 포함할 경우 단기 해운경기 분석모형의 예측력이 향상될 수 있음을 의미하는 분석결과이다.
시계열자료가 가진 자기상관은 추정된 상관관계를 왜곡시키는 요인들 중의 하나로 작용한다. 회귀모형의 잔차항에 자기상관이 있는 지를 검정하기 위해 Durbin-Watson 통계량이 흔히 쓰인다. 잔차항에 자기상관을 가진 회귀모형의 효율성을 향상시키기 위해 yule-Walker 법, 비선형최소제곱법, 최우추정법 및 사전백색화법이 사용되어 왔다. 본 연구는 자기상관으로 인한 상관관계의 왜곡을 방지하기 위한 이들 방법들에 대해 고찰하였다. 사전백색화법을 제외한 앞의 3가지 방법을 20년간의 실제 시계열 자료에 적용하였으며 몬테카를로법을 이용하여 각 방법의 오차변이를 조사하였다. 각 방법의 평균잔차제곱분포의 경우, 최우추정법으로 추정된 평균잔차제곱이 가장 작았으며 분포 범위도 가장 작았으나 각 추정방법 사이에 유의한 차이가 발견되지는 않았다.
본 논문에서는 Type-1 퍼지 논리 시스템과 Type-2 퍼지 논리 시스템을 설계하고, 불확실한 정보를 갖는 입력 데이터에 대하여 각각의 성능을 비교한다. Type-1 퍼지 논리 시스템은 외부잡음에 민감한 단점을 가지고 있는 반면, Type-2 퍼지 논리 시스템은 불확실한 정보를 잘 표현할 수 있으며 효율적으로 취급한다. 따라서 Type-2 퍼지 논리 시스템을 이용하여 이러한 단점을 극복하고자 2가지의 모델을 설계한다. 첫 번째 모델은 규칙의 전 ${\cdot}$ 후반부가 불확실성을 표현 할 수 없는 Type-1 퍼지 집합으로 구성된 Type-1 퍼지 논리 시스템을 설계한다. 두 번째는 규칙 후반부만 Type-2 퍼지 집합으로 구성한 두가지의 Type-2 퍼지 논리 시스템을 설계한다. 여기서 규칙 전반부의 입력 공간 분할에는 Min-Max 방법의 균등분할을 사용하고, 규칙 후반부 멤버쉽 함수의 중심 결정에는 입자 군집 최적화(Particle Swarm Optimization) 알고리즘을 사용하여 동정한다. 또한 입력 데이터에 인위적으로 가하는 노이즈의 정도에 따른 각각 모델의 성능을 비교한다. 마지막으로 비선형 모델 평가에 주로 사용되는 가스로 시계열 데이터를 제안된 모델에 적용하고, 실험을 통하여 불확실한 정보를 다루기에 Type-1 퍼지 논리 시스템 보다 Type-2 퍼지 논리 시스템이 효율적이라는 것을 보인다.
전 세계적인 기후변화로 인해 태풍과 집중호우의 빈도와 규모가 증가하고 있으며 그로 인해 수재해 대응과 수자원 관리에 많은 어려움이 따른다. 댐 운영은 이러한 수자원 관리의 중요한 요소이며 정확한 댐 유입량의 예측은 효율적인 댐 운영과 관리의 필수적인 부분이다. 최근에는 여러 분야에서 활용되고 있는 딥러닝 모델을 활용하여 댐 유입량 예측에 관한 다수의 연구들이 수행되고 있다. 특히, 수문 시계열의 장기적인 특성과 비선형적인 관계를 고려하기 위해 연속형 모의를 기반으로 하는 딥러닝 모델의 적용 및 평가와 관련 연구의 필요성이 대두되고 있다. 본 연구에서는 연속형 모의를 기반으로 하는 딥러닝 모델을 활용하여 댐 유입량 예측을 수행하고자 하며 이의 적용성을 평가하고자 한다. 적용 대상 지역으로는 안동댐 상류 유역을 선정하였으며 2006년부터 2020년까지의 시 단위 강우 및 댐 유입량 자료를 활용하였다. 선행시간(1~6시간)별 예측 유입량과 관측 유입량의 비교를 통한 정량적 평가를 수행하였다. 또한 입력 자료에 대한 과거 기간, 모델 구성, 손실함수 등에 대한 조건별 평가를 통해 예측 정확도의 변화에 대한 분석을 수행하였다. 본 연구결과를 통해, 딥러닝 기반의 댐 유입량 예측 정확도에 대한 향상과 실시간 예측을 위한 딥러닝 모델의 활용성 증대에 기여할 것으로 기대된다. 향후, 강우 예보 자료를 연계한 딥러닝 기반의 실시간 댐 유입량 예측 기법을 제안하고 이의 활용성을 평가하고자 한다.
본 논문은 케미컬 탱커시장의 운임예측에 관하여 인공신경망을 적용하였으며 전통적인 시계열 모델인 ARIMA모형과 비교하였다. 케미컬 시장의 경우 상대적으로 소규모이나 범용성이 높은 선박을 이용한 시장으로 수급모델을 활용하여 운임시장을 분석하기 어려우며, 운임의 변동성이 크기 때문에 선형모형을 활용하는데는 한계가 있다. 본 연구는 케미컬 시장의 특성을 고려하여 비선형 모델인 인공신경망을 이용하여 ARIMA와 비교한 결과 RMSE와 Correlation 측면에서 예측성능이 우수함을 보였으며, 케미컬 탱커의 운임예측에 더 적합함을 보였다. 본 연구는 운임거래에 있어 과학적 모델을 제시함으로써 의사결정의 질을 제고하는데 기여할 뿐만 아니라 학문적으로 소외되어온 케미컬 시장 연구에 도움이 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.