• 제목/요약/키워드: 시계열분석

Search Result 2,229, Processing Time 0.034 seconds

Temporal Fusion Transformers and Deep Learning Methods for Multi-Horizon Time Series Forecasting (Temporal Fusion Transformers와 심층 학습 방법을 사용한 다층 수평 시계열 데이터 분석)

  • Kim, InKyung;Kim, DaeHee;Lee, Jaekoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.2
    • /
    • pp.81-86
    • /
    • 2022
  • Given that time series are used in various fields, such as finance, IoT, and manufacturing, data analytical methods for accurate time-series forecasting can serve to increase operational efficiency. Among time-series analysis methods, multi-horizon forecasting provides a better understanding of data because it can extract meaningful statistics and other characteristics of the entire time-series. Furthermore, time-series data with exogenous information can be accurately predicted by using multi-horizon forecasting methods. However, traditional deep learning-based models for time-series do not account for the heterogeneity of inputs. We proposed an improved time-series predicting method, called the temporal fusion transformer method, which combines multi-horizon forecasting with interpretable insights into temporal dynamics. Various real-world data such as stock prices, fine dust concentrates and electricity consumption were considered in experiments. Experimental results showed that our temporal fusion transformer method has better time-series forecasting performance than existing models.

A Comparison of Autoregressive Integrated Moving Average and Artificial Neural Network for Time Series Prediction (자기회귀누적이동평균모형과 신경망모형을 이용한 시계열예측의 비교)

  • Yoon, YeoChang
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.1516-1519
    • /
    • 2011
  • 예측에 필요한 중요한 자료에는 비선형 자료와 시계열과 같은 선형 자료 등이 있다. 이들 자료는 그 함축적인 관계가 매우 복잡하여 전통적인 통계분석 도구로 식별하는데 어려움이 많다. 신경망 분석은 비모수적 문제나 비선형 곡선 적합능력의 우수성 때문에 현실세계에서의 고유한 복잡성을 다루는 많은 경제 응용 분야에서 널리 이용되고 있다. 신경망은 또한 경제 시계열자료의 예측분야에서도 여러 연구에서 훌륭한 도구로서 적용되고 있다. 전통적으로 우리나라에서 시계열자료의 예측은 선형 자료적 분석을 중심으로 하는 분석도구인 자기회귀누적이동평균(ARIMA)모형을 이용한 시계열분석이 일반적이다. 이 연구에서는 신경망과 ARIMA 모형을 이용하여 한국의 주가변동 자료 및 자동차등록 현황 자료등과 같은 시계열자료를 이용한 예측결과를 비교한다. 연구의 결과는 신경망을 이용한 예측 방법들이 ARIMA 예측 결과보다 통계적으로 작은 오차를 주는 보다 효율적인 방법임을 보여주고 있다.

웨이브렛 변환과 재무시계열

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.11 no.1
    • /
    • pp.1-36
    • /
    • 2005
  • 한 시계열의 원래 관찰치가 본래 가지고 있는 정보를 하나도 잃지 않고 또한 손상시키지 않고 그대로 보존되며 계산이 용이하고, 뿐만 아니라 가능도함수나 비모수 추정함수를 계산함에 있어 수치적 불안정 잠재성이 존재하지 않도록 변환된 시계열을 얻을 수 있으면, 다시 말해 각종 통계량의 계산에 용이하게 적용 가능하되 원래 시계열이 보유하고 있는 모든 성질들은 추호도 손상시킴이 없이 이 시계열을 변환시킬 수 있는 변환방법이 존재한다면, 모수의 추정치와 검정통계량을 정확히 얻을 수 있을 것이다. 이와 같은 변환방법이 웨이브렛 변환이다. 이 변환은 푸리에 분석의 결점을 극복하되 후리에 변환이 적용되는 분야에는 거의 모두 적용 가능한 변환방법이다. 이 논문에서는 시계열의 웨이브렛 변환을 소개하고 이 변환이 재무시계열의 모형화에 한몫을 단단히 할 수 있다는 점을 밝히고자 한다. 그리고 웨이브렛 변환을 성공적으로 적용할 수 있는 주가과정을 하나의 예로 제시하여 웨이브렛 변환의 구체적 적용방법을 탐구하고자 한다. 웨이브렛의 주가 시계열의 적용방법의 한 예로 주가의 장기기억과정을 분석한다. 한국과 외국의 일별 주가지수의 수익률 시계열들이 장기기억과정을 따르는 시계열임이 발견되었다. 여러 형태의 웨이브들을 사용하여 검정하였는데 이 모두가 한결같이 주가지수가 장기기억성과정임을 지지하고 있다.

  • PDF

Prediction of the shelf-life of ammunition by time series analysis (시계열분석을 적용한 저장탄약수명 예측 기법 연구 - 추진장약의 안정제함량 변화를 중심으로 -)

  • Lee, Jung-Woo;Kim, Hee-Bo;Kim, Young-In;Hong, Yoon-Gee
    • Journal of the military operations research society of Korea
    • /
    • v.37 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • To predict the shelf-life of ammunition stockpiled in intermediate have practical meaning as a core value of combat support. This research is to Predict the shelf-life of ammunition by applying time series analysis based on report from ASRP of the 155mm, KD541 performed for 6 years. This study applied time series analysis using 'Mini-tab program' to measure the amount of stabilizer as time passes by is different from the other one that uses regression analysis. The average shelf-life of KD541 drawn by time series analysis was 43 years and the lowest shelf-life assessed on the 95% confidence level was 35 years.

Efficient Time-Series Similarity Measurement and Ranking Based on Anomaly Detection (이상탐지 기반의 효율적인 시계열 유사도 측정 및 순위화)

  • Ji-Hyun Choi;Hyun Ahn
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.39-47
    • /
    • 2024
  • Time series analysis is widely employed by many organizations to solve business problems, as it extracts various information and insights from chronologically ordered data. Among its applications, measuring time series similarity is a step to identify time series with similar patterns, which is very important in time series analysis applications such as time series search and clustering. In this study, we propose an efficient method for measuring time series similarity that focuses on anomalies rather than the entire series. In this regard, we validate the proposed method by measuring and analyzing the rank correlation between the similarity measure for the set of subsets extracted by anomaly detection and the similarity measure for the whole time series. Experimental results, especially with stock time series data and an anomaly proportion of 10%, demonstrate a Spearman's rank correlation coefficient of up to 0.9. In conclusion, the proposed method can significantly reduce computation cost of measuring time series similarity, while providing reliable time series search and clustering results.

Multi-horizon Time Series Forecasting Using Temporal Fusion Transformer (Temporal Fusion Transformer 모델을 활용한 다층 수평 시계열 데이터 분석)

  • Kim, Inkyung;Kim, Daehee;Lee, Jaekoo
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.479-482
    • /
    • 2021
  • 시계열 형태의 데이터는 다양한 분야에서 수집되고 응용되기 때문에 정확한 시계열 예측은 많은 분야에서 운영 효율성을 높일 수 있는 중요한 분석 방법으로 고려된다. 그중 다층 수평 예측은 사용자에게 전반적인 시계열 데이터 경향성을 제공할 수 있다. 하지만 다양한 정보를 포함하는 시계열 데이터는 데이터에 내재한 이질성(heterogeneity)까지 포괄적으로 고려한 방법을 통해서만 정확한 예측을 할 수 있다. 하지만 지금까지 많은 시계열 분석 모델들이 데이터의 이질성을 반영하지 못했다. 이러한 한계를 보완하고자 우리는 Temporal Fusion Transformer 모델을 사용하여 실생활과 밀접한 관련이 있는 데이터에 적용하여 이질성을 고려한 향상된 예측을 수행하였다. 실제, 주식 데이터와 미세 먼지 데이터와 같은 실생활 시계열 데이터에 적용하였고 실험 결과 기존 모델보다 Mean Squared Error(MSE)가 0.3487 낮은 것을 확인하였다.

Time Series Analysis and Forecasting of Electrical Conductivity in Coastal Aquifers (연안암반대수층의 해수침투경향성 파악을 위한 전기전도도 시계열 분석과 예측)

  • Ju, Jeong-Woung;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.267-276
    • /
    • 2017
  • Seawater intrusion into coastal fractured rock aquifer, resulting in groundwater contamination, is of serious concern in coastal areas of Jeolla Namdo, Korea, which heavily depends on groundwater resources. Time series analysis and forecasting were carried out to analyze and predict EC which is a major indicator of seawater intrusion. Two time series models of autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA) were tested for suggesting appropriate time series model. Time series data of EC measured over one year showed a increasing trend with short periodic fluctuations, due to tidal effect and pumping, which indicated that EC time series data tended to be non-stationary. SARIMA model was found better fitted to observed EC than any other time series model. Time series analysis and modeling was found to be a useful tool to analyze EC at coastal fractured rock aquifer subject to seawater intrusion.

Data Quality Management Method base on Seasonality from Time series Data (시계열 데이터 특성 기반 품질 관리 방법 연구)

  • Lee, Jihoon;Moon, Jaewon;Hwang, Jisoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.93-96
    • /
    • 2022
  • IoT 기기의 보급 및 확산으로 많은 산업군에서 이를 바탕으로 시계열 데이터를 획득하고 분석하려는 시도가 확대되고 있다. 시간의 흐름에 따라 저장된 데이터들은 주기에 따라 특정 패턴을 갖는 경우가 많으며 이러한 패턴을 파악한다면 주요 산업군의 의사 결정에 도움이 된다. 그러나 IoT 기기의 수집 오류 및 네트워크 환경에 의해 대부분의 시계열 데이터들은 누락 데이터, 이상 데이터를 갖고 있으며 이를 처리하지 않고 분석할 경우 오히려 잘못된 결과를 초래한다. 본 논문에서는 패턴 파악을 위해 '시간, 일, 주, 월, 년' 등 시간의 주기를 기준으로 데이터를 분할하며 이에 기반하여 데이터셋을 재구성하고 활용 가능한 데이터와 불가능한 데이터로 구분한다. 선별된 데이터셋은 클러스터링에 적용하였으며, 제안하는 방법을 적용할 경우 주기를 갖는 시계열 데이터를 활용하는 분석 및 학습에서 더 나은 결과를 보임을 확인하였다.

  • PDF

Analysis of long-term climate variability by extending hydrologic time series (수문 시계열 확장을 통한 장기 기후 변동성 분석)

  • Kim, Taereem;Kim, Hanbeen;Jung, Younghun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.308-308
    • /
    • 2019
  • 지구상 해양, 대기 및 대륙 상호간의 연속적인 물의 거동을 나타내는 물의 순환의 주요 과정 중 하나인 유량 자료는 경년부터 수십년간의 다양한 기상학적 변동성을 내포하며 해당 지역의 수문기상학적 특성을 반영한다. 이러한 기상학적 변동성 중에서 비교적 긴 시간 주기를 나타내는 저주파 진동은 전지구적 기후변화의 장기적 영향을 나타내며 해수면 상승, 홍수 또는 가뭄과 같은 극한 수문사상을 나타내는 매우 주요한 지표로 활용되고 있지만 관측된 수문 시계열의 짧은 자료길이로 인하여 통계적 분석의 신뢰성에 한계를 보여왔다. 따라서 과거 수문 시계열의 확장으로 인하여 부재의 영역으로 남아있던 자료 기간의 한계가 보완되면 보다 정확하고 신뢰도 있는 분석이 가능할 것이다. 나무나이테를 활용한 고기후 복원 등의 연구가 증가하고 있지만 공학 분야에서 이를 실제로 활용한 연구는 아직 미비하다. 따라서 본 연구에서는 과거 기후의 정보를 바탕으로 복원된 수문 시계열을 활용하여 수문 시계열에 내재된 장기 기후 변동성을 통계적으로 분석하기 위한 문헌들을 조사하고, 장기적인 시간 흐름에 내재된 잠재적인 경향 및 변동성을 통계적 분석을 파악하고자 한다. 이를 위해 주어진 수문 시계열에 내재된 저주파 신호을 추출하기 위한 경험적 모드분해법을 활용하여 수문 자료에 내재된 장기 변동성을 추출하였으며, 산업화 이전부터 연장된 수문 시계열의 공학적 활용성을 분석하고자 한다.

  • PDF

시계열분석을 통한 화재발생과 전기사용량 간의 연관성에 관한 연구

  • Gwon, Seong-Pil;Song, Dong-U
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.11a
    • /
    • pp.219-220
    • /
    • 2013
  • 본 연구에서는 최근 5년간 서울 지역에서 발생한 월별 화재 건수와 동일한 지역에서 같은 기간 동안 가정용으로 사용된 전기량 사이에 존재하는 연관성을 파악하기 위하여, 이 두 변수에 대하여 시계열분석을 수행하였다. 본 연구에서는 통계전용 인터프리터 언어 R이 사용되었으며, 특히 칼만 필터를 이용한 데이터 처리를 위해 R에서 제공되는 KFAS(Kalman Filtering And Smoothing) 패키지가 사용되었다. 우선 시계열분석을 통해 월별 화재발생 건수는 1년을 주기로 하는 사인파 곡선의 형태로 변화하지만, 가정용 전기사용량은 1년에 두 번씩, 즉 여름철과 겨울철에 크게 증가한다는 사실을 확인할 수 있었다. 더 나아가 KFAS의 파라미터를 적절히 조절함으로써, 가정용 전기사용량과 월별 화재발생 건수 사이의 연관성을 가시적으로 보여줄 수 있었다.

  • PDF