Communications for Statistical Applications and Methods
/
제17권2호
/
pp.263-273
/
2010
시계열의 결측값은 미지의 모수 또는 확률변수로 취급할 수 있으며 이에 따른 최대가능도방법과 확률변수방법에 의해 결측치를 추정할수 있으며 또한 주어진 자료 하에서 미지의 값에 대한 조건부기대치로 예측할수 있다. 이 연구의 주된 목적은 불완전한 자료에 대해 기존에는 ARMA모형만을 고려하였는데 이를 확장하여 공간시계열모형인 STAR모형에 적용하여 두 가지 추정방법을 이용해 결측값의 추정 정밀도를 비교하는데 있다. 사례분석을 위해 한국질병관리본부에서 전산보고 하고 있는 전염병 자료 중에서 2001~2009년 동안의 월별 Mumps 자료를 이용하여 두 가지 추정방법의 추정 정밀도와 예측정확도를 비교하였다.
본 논문에서는 R에서 시계열 자료 예측을 위한 자동화 함수에 대하여 고찰하고 그 예측 성능을 비교합니다. 대표적인 시계열 예측 방법인 지수 평활 모형과 ARIMA (autoregressive integrated moving average) 모형을 대상으로 하였으며, 이들의 모형화 및 예측 자동화를 가능하게 하는 R의 4가지 자동화 함수인 forecast::ets(), forecast::auto.arima(), smooth::es()와 smooth::auto.ssarima()를 대상으로 하였습니다. 이들의 예측 성능을 비교하기 위하여 3,003가지의 시계열로 구성되어 있는 M3-Competition자료와 3가지의 정확성 척도를 사용하였습니다. 4가지 자동화 함수는 모형화의 다양성 및 편리성, 예측 정확도 및 실행 시간 등에서 각자 장단점이 있음을 확인하였습니다.
본 연구는 혼합주기모형을 해운경기 예측에 활용하기 위해 기존의 비선형 장기균형관계분석에서 통계적으로 유의한 요인들을 단기모형에 적용하였다. 가장 일반적인 단일변수(univariate) AR(1) 모형과 혼합주기모형으로부터 각각 표본외 예측을 실시하여 예측오차와 비교한 결과 혼합주기모형의 예측력이 AR(1) 모형보다 향상됨을 확인하였다. 이러한 실증분석은 새로운 고차원 혼합주기모형이 해운경기변동 예측에 유용한 모형임을 의미하며, 즉, 최근 다변수 시계열 자료가 주로 장기균형관계(long-run equilibrium)를 대상으로 하고 있는데, 고차주기와 같은 정보를 분석에 포함할 경우 단기 해운경기 분석모형의 예측력이 향상될 수 있음을 의미하는 분석결과이다.
본 연구는 2016년 7월부터 2017년 6월까지 인천 소재 A 대학교의 15분 단위의 일일 전기 사용량 시계열 데이터에 대해 functional data analysis 기법을 적용하여 군집화하고 각 군집의 특성을 파악하고 예측에 활용하고자 한다. 하루동안의 A 대학교의 전기 사용량은 패턴은 주중과 주말 에 큰 차이를 보이며 스플라인 기저함수로 FPCA 구한 후 이들에 대한 가우시안 분포의 혼합모형 기반 군집분석으로 3개의 군집화가 적절해 보인다. 각 군집에 대해 평균 함수, 확률밀도함수, 일들의 분포 등을 정리해 각 군집에 대한 정보와 특징을 보여준다.
본 연구는 최근 이상기온 현상으로 기온의 변동성이 커지고 국제유가 급등으로 인한 도시가스 수요의 변동성이 확대되어 가는데 대응하여 시간변동계수를 가지는 시계열 모형을 이용하여 보다 정확한 천연가스의 소비함수를 추정하고자 하였다. 천연가스 소비함수에 가장 영향을 미치는 국내총생산과 기온을 중요변수로 활용하였으며, 방법론으로는 시간변동계수를 갖는 공적분회귀모형과 오차수정모형을 사용하였다. 분석의 결과, 천연가스 소비함수는 국내총생산과 기온변수와의 상관관계에서 시간변동계수에 의해 영향을 받는다는 것으로 검증되었다. 이러한 시간변동계수 시계열모형을 이용하여 2011년 7월~2012년 12월까지 18개월 동안 천연가스 월별 수요예측을 실시한 결과, 2011년의 도시가스용 천연가스 소비량은 18,303천톤으로 예측되었으며, 상반기 경기회복에 따른 각 소비주체들의 소비급증으로 실제 사용된 18,681천톤과 큰 차이를 보이지 않은 것으로 분석되었다. 그리고 2012년에는 약 19,213천톤이 소요될 것으로 추정되었다. 향후 천연가스의 가격 및 대체재간 상대가격, 수요가의 규모 등을 포함하여 수요모형의 확대가 필요하다.
Journal of the Korean Data and Information Science Society
/
제27권6호
/
pp.1511-1523
/
2016
우리나라의 5대 강력범죄 (살인, 강도, 강간, 폭력, 절도) 발생의 증가추세는 우리나라의 사회, 경제적 요인의 변화 추세와 무관하지 않으며, 이와 관련한 논의는 여러 사회과학 연구에서 논의되어져왔으나 시계열 자료의 특성을 제대로 반영하지 않은 경우가 많다. 이에 본 연구에서는 강력범죄 변화의 추이를 살펴보고 그 통제 요인들에 관하여 논의하였다. 통제 요인들을 살펴봄에 있어 시간, 계절 및 순환과 같이 시계열 자료로써 갖는 내재적 요인들과 경제적, 사회변동 및 범죄통제에 관련한 외재적 요인들로 범주화 하여 고려하였다. 또한 시계열자료가 본질적으로 갖는 자기상관성을 반영한 모형 역시 고려하여 비교하였다. 이러한 다양한 시계열 모형들을 통하여 5대 강력범죄의 발생요인을 점검하는 한편 발생건수를 예측함으로써 강력 범죄에 대한 예방적 정책적 도움을 주고자 하였다.
본 연구에서는 기존 매개변수적 수문시계열 예측모형을 보완하고자 Singular Spectrum Analysis(SSA)와 Linear Recurrent Formula를 결합한 모형을 제안하였다. SSA는 주로 시계열에 내재해 있는 구성성분을 추출하기 위한 목적으로 많이 이용되고 있다. 이러한 관점에서 본 연구에서는 엘니뇨 및 라니냐 등의 기상현상과 수문사상의 상관성 분석에 주로 적용되고 있는 SSA와 시계열 예측을 위해서 Linear Recurrence Formula를 결합한 예측 모형을 월단위의 수위와 유입량 시계열 자료를 대상으로 적용성 및 타당성을 검토해 보았다. 모형을 통해 수문시계열을 모의한 결과 전체적인 통계적인 특성 및 시각적인 검토에서 실측자료와 매우 유사한 모의가 가능하였으며 실측 자료를 바탕으로 Blind Forecasting을 실시한 결과 2가지 예에서 모두 1년 정도의 예측구간에서 합리적인 결과를 제시하여 주었다. 따라서 단기예측을 수문모형으로서 적용이 가능할 것으로 사료된다.
시계열 자료의 분석에서 분산이 일정하지 않을 경우 이에 대한 해결방법으로 변환이 사용된다. 그러나 이러한 변환은 분산을 안정화시킴으로서 추정 및 검정에 타당성을 주는 반면 새로운 편의를 생성하거나(Granger & Newbold,1976) 모형을 복잡하게 만듦으로써 해석의 어려움도 수반한다. 신과 강(2001)은 평균이 크고 그에 비해 분산이 작을 경우 Box-Cox 멱 변환이 시계열 자료에 대하여 별 영향을 미치지 않음을 연구하였다. 본 논문은 이에 대한 확장으로 공간자료에서도 이 이론이 성립함을 밝혔다.
시계열 자료를 분석할 때 쉽게 접근하는 통계적 방법은 ARMA 모형이며 신경망 학습 방법 중에서는 다층 퍼셉트론에서의 Back-propagation 알고리즘이 일반적이다. Back-propagation을 비롯한 신경망 학습의 구조는 자료의 특성에 따라 경험적으로 결정하는 것으로 알려져 있다. 그러나 바로 이 점이 신경망 학습방법의 이용을 어렵게 하는 요인이기도 하다. 본 연구는 ARMA 모형 중 몇 개 유형의 자료에 대하여 Back-propagation 알고리즘을 적용함에 있어 어떠한 구조로 학습하는 것이 효율적인가를 입력층과 은닉층의 크기, 활성화 함수를 중심으로 검토하였다.
장래의 해상교통량에 대한 정확한 예측은 항로설계 및 해상교통의 안전성 평가 측면에서 중요한 요소이다. 본 연구는 신뢰성 있는 해상교통량을 추정하기 위해 시계열 모델의 지수평활법과 ARIMA 모형을 이용하여 모형의 식별 및 진단 방안을 제시하였다. 제시된 방법의 효과를 검증하기 위하여 주요항만인 부산항, 광양항, 인천항, 평택항의 해상교통량을 예측하였다. 그 결과로 부산항은 ARIMA 모형, 광양항은 Winters 승법 모형, 인천항은 단순계절 모형, 평택항은 ARIMA 모형이 더 적합한 모형으로 알 수 있었으며, 각 항만별 계절에 따라 월별 교통량의 차이를 보이는 것으로 분석되었다. 본 연구 결과는 향후 항로 및 항만설계 또는 해상교통 안전성 평가에 보다 신뢰성 있는 추정치를 제공할 수 있을 것으로 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.