• Title/Summary/Keyword: 시계열모형

Search Result 1,024, Processing Time 0.027 seconds

Time Series Models for Performance Evaluation of Network Traffic Forecasting (시계열 모형을 이용한 통신망 트래픽 예측 기법연구)

  • Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.219-227
    • /
    • 2007
  • The time series models have been used to analyze and predict the network traffic. In this paper, we compare the performance of the time series models for prediction of network traffic. The feasibility study showed that a class of nonlinear time series models can be outperformed than the linear time series models to predict the network traffic.

Time Series Using Fuzzy Logic (삼각퍼지수를 이용한 시계열모형)

  • Jung, Hye-Young;Choi, Seung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.4
    • /
    • pp.517-530
    • /
    • 2008
  • In this paper we introduce a time series model using the triangle fuzzy numbers in order to construct a statistical relation for the data which is a sequence of observations which are ordered in time. To estimate the proposed fuzzy model we split of a universal set includes all observation into closed intervals and determine a number and length of the closed interval by the frequency of events belong to the interval. Also we forecast the data by using a difference between observations when the fuzzified numbers equal at successive times. To investigate the efficiency of the proposed model we compare the ordinal and the fuzzy time series model using examples.

순환신경망모형을 이용한 단기 시계열예측

  • 윤여창
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.599-605
    • /
    • 1998
  • 본 연구에서는 단순구조 순환신경망을 이용한 신경망예측과 전통적인 시계열예측 방법을 이용하여, 순환변동이 있는 시계열자료의 단기예측 오차를 비교한다. 순환신경망모형의 입력자료를 변화시키는 개선된 학습방법을 적용하여 시계열자료를 학습하고, 신경망예측의 결과는 선형 AR(9)모형, 비선형 SETAR모형 그리고 이들의 결합모형을 이용한 예측결과와 비교한다. 실증분석에 적용된 시계열자료는 1700년부터 1987년 까지의 태양흑점 자료이며 예측에 이용된 검정자료는 1980년부터 8년 간의 자료이다.

  • PDF

Time series regression model for forecasting the number of elementary school teachers (초등학교 교원 수 예측을 위한 시계열 회귀모형)

  • Ryu, Soo Rack;Kim, Jong Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.321-332
    • /
    • 2013
  • Because of the continuous low birthrates, the number of the elementary students will decrease by 17% in 2020 compared to 2011. The purpose of this study is to forecast the number of elementary school teachers until 2020. We used the data in education statistical year books from 1970 to 2010. We used the time-series regression model, time series grouped regression model and exponential smoothing model to predict the number of teachers for the next ten years. Consequently time-series grouped regression model is a better model for forecasting the number of elementary school teachers than other models.

시계열(時系列) 자료(資料)와 재무관리(財務管理) 이론(理論)

  • Lee, Il-Gyun
    • The Korean Journal of Financial Management
    • /
    • v.11 no.1
    • /
    • pp.1-29
    • /
    • 1994
  • 재무관리의 모든 영역을 완벽하게 이해하기 위하여는 기업재무관리와 투자론을 비롯하여 금융산업 전체에 대한 연역적 방법에 의한 이론의 정립과 실증분석을 통한 이론의 정립이 관건이라 할 수 있다. 이 논문에서는 실증 분석을 수행함에 있어 우리나라에서 활발하게 논의가 진행되지 않는 시계열분석의 영역을 살펴보았다. 그것은 이와 같은 분야를 천착해 봄으로써 이 분야가 재무관리에 대한 통찰력과 현실 적합성의 판단력을 배양하는데 큰 공헌을 할 수 있으리라는 믿음 때문이다. 이 논의를 통하여 시계열 분석에 대한 활발한 연구가 진행되기를 기대하고 있다. 시계열 확률과정에 대한 재무관리이론을 연역적으로 도출하기는 용이하지 않다. 시계열 분석에서 제시되는 여러 방법론을 재무관리의 시계열에 적용하여 그 시계열의 성질과 특성을 파악하면 그것이 그대로 현실에 적용될 수 있을 것이다. 이러한 연구의 결과는 어떤 형태로든 연역적 방법에 의한 이론의 정립에 깊은 영향을 미칠 것이다. 뿐만 아니라 연속시간의 틀과 이시적(異時的) 양태하(樣態下)에서 많은 재무관리 모형들이 개발되고 있으며, 동태적 상황을 해명하는 의도에서 이 모형들이 연구되고 있는 만큼 시계열 분석은 이 분야에 직접적으로 이용될 수 있다. 시계열 분석에서 제시된 많은 모형들이 재무관리의 실증적 현상을 설명하는데 효과적으로 활용될 수 있다. 뿐만 아니라 현재 연역적으로 개발된 모형들이 설명할 수 없는 부분을 시계열 분석이 직접적으로 해명할 수 있는 능력을 확보하고 있음도 제시되었다. 증권의 현가모형(現價模型), 이자율의 기간구조, 효율적 시장가설도 주가의 변동성 등은 시계열 분석의 다양한 기법을 사용하여 검증되어야 하며, 이 경우 특히 분산의 추정방법을 여러 측면에서 개발해 야 할 것이다. 시계열 분석에서는 두개 또는 그 이상의 기법을 하나로 통합하는 방법이 있을 수 있다. ARIMA와 ARCH가 결합되는 것을 본 바 있다. 구조적(構造的) 변화(變化)(structural change)모형(模型)과 ARCH의 결합도 가능하다. 다른 분야로서는 변동성(變動性)에 관한 연구이다. 변동성(變動性)에 관한 연구는 variance bounds test에 한정된 감이 있으나 정보와 변동성의 관계가 중요시되고 있는 만큼 정보집합과 시계열 분석 기법의 결합은 변동성의 연구에 새로운 지평을 열어줄 것으로 보인다. 따라서 정보집합의 형성에 따라 새로운 추정방법이 개발될 여지가 풍부하다.

  • PDF

Automatic order selection procedure for count time series models (계수형 시계열 모형을 위한 자동화 차수 선택 알고리즘)

  • Ji, Yunmi;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.147-160
    • /
    • 2020
  • In this paper, we study an algorithm that automatically determines the orders of past observations and conditional mean values that play an important role in count time series models. Based on the orders of the ARIMA model, the algorithm constitutes the order candidates group for time series generalized linear models and selects the final model based on information criterion among the combinations of the order candidates group. To evaluate the proposed algorithm, we perform small simulations and empirical analysis according to underlying models and time series as well as compare forecasting performances with the ARIMA model. The results of the comparison confirm that the time series generalized linear model offers better performance than the ARIMA model for the count time series analysis. In addition, the empirical analysis shows better performance in mid and long term forecasting than the ARIMA model.

Economic Forecasting under the Korean Currency Crisis: Short-term Forecasting of GDP with Business Survey Data (외환위기하에 경제예측 -기업경기실사지수를 이용한 GDP 단기예측-)

  • 이긍희
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.2
    • /
    • pp.397-404
    • /
    • 1999
  • 1997년말 발생한 외환위기 이후 불확실성의 증대로 시계열모형을 이용한 경제예측에 한계가 노정되고 있다. 이를 극복하기 위하여 경제주체의 기대(expectation)를 파악할수 있는 기업경기실사지수를 경제예측에 도입할 필요가 있다. 본고에서는 기업경기실사지수를 이용한 모형과 시계열모형을 추정하고 이들을 예측력 측면에서 비교, 분석해보았다. 분석결과 불확실성이 높았던 외환위기이후 기간에는 기업경기실사지수를 이용한 모형이 시계열모형보다 예측력면에서 우수한 것으로 나타났다.

  • PDF

Evaluation and Comparison of seasonal multivariate time series model construction with rainfall and site characteristics (강우 및 지점특성치를 이용한 계절형 다변량 시계열 모형 구축 평가 및 비교)

  • Kim, Taereem;Choi, Wonyoung;Shin, Hongjoon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.29-29
    • /
    • 2015
  • 수자원의 지속적인 관리 및 효율적인 활용을 위하여 수문량의 예측과 분석은 필수적인 과정이라 할 수 있으며 이에 따라 다양한 수문 모형이 구축되고 강우, 유량 등 대표적인 수문량의 예측이 수행되어져 왔다. 그 중에서도 수문 시계열 모형은 시간의 흐름에 따라 일정하게 기록되어온 수문 자료를 확률적인 과정을 통하여 모형을 구축하고 이를 바탕으로 미래 수문량을 예측하는 데활용되는 모형으로, 과거에 기록된 수문 패턴이 미래에도 지속된다는 가정 하에 구축된다. 일반적으로 시계열 모형은 하나의 자료계열로 모형을 구축하는 단변량 모형과 원 자료계열 외에 다른 자료계열을 고려하여 모형을 구축하는 다변량 모형이 있으며, 다변량 모형은 원 자료계열에 영향을 미치는 외부변수를 고려함으로써 두 자료계열간의 상관성을 모형에 반영할 수 있는 장점을 가지고 있다. 또한 자료계열의 계절성을 고려하여 시계열 모형을 구축할 경우, 수문 시계열이 가지고 있는 계절적 영향을 잘 반영할 수 있다. 따라서 본 연구에서는 계절성을 고려한 다변량 시계열 모형인 SARIMAX(Seasonal AutoRegressive Integrated Moving Average with eXogenous) 모형을 이용하여 대표적인 수공구조물인 댐의 유입량 예측을 수행하였다. 일반적으로 댐 유입량 예측에는 댐의 유입량과 상관성이 높은 강우가 외부변수로 사용되어져 왔으나, 이 외에도 영향을 미칠 수 있는 지점특성치를 고려하여 모형을 구축한 후 비교하였다.

  • PDF

불규칙한 관측주기를 갖는 지하수자료를 이용한 지하수위 변동의 시계열 분석

  • 이명재;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.64-68
    • /
    • 2000
  • 장기간 관측된 지하수위 자료를 시계열분석 중의 하나인 전이함수 모형(Transfer Function - Noise model)을 이용하여 분석하였다. 일반적으로 전이함수 모형은 입력 변수와 출력변수와의 관계가 선형적일 때 적용이 가능하며, 자료가 시간에 대해 연속적으로 존재해야 하는 제한이 있다. 강수량과 지하수위의 변동은 비선형적인 관계를 가지고 있어 이러한 전이함수 모형을 직접 적용하는데는 어려움이 있다. 이러한 비선형성의 정도를 감소시키기 위해 물리모형(HYDRUS)을 이용하여 침투량을 계산하고 이를 입력변수로 사용하여 전이함수 모형을 적용하였다. 침투량을 입력변수로 모형을 추정하였을 때, 강수량을 직접 입력자료로 사용했을 경우보다 ME(mean error), RMSE(root-mean-squre error), MAE(mean absolute error)에서 상대적으로 작은 값을 보여주고 있다. TFN 모형의 모수를 추정하기 위해서 Kalman 필터 알고리즘과 최우추정법(Maximum Likelihood Estimation)을 이용하였다. Kalman 필터 알고리즘을 이용하여 불규칙한 관측주기를 갖는 시계열이나 결측값이 있는 시계열에 대해서도 전이함수 모형을 구하였으며, 이를 통해 결측값에 대한 추정이 가능하였다.

  • PDF

Prediction for Nonlinear Time Series Data using Neural Network (신경망을 이용한 비선형 시계열 자료의 예측)

  • Kim, Inkyu
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.357-362
    • /
    • 2012
  • We have compared and predicted for non-linear time series data which are real data having different variences using GRCA(1) model and neural network method. In particular, using Korea Composite Stock Price Index rate, mean square errors of prediction are obtained in genaralized random coefficient autoregressive model and neural network method. Neural network method prove to be better in short-term forecasting, however GRCA(1) model perform well in long-term forecasting.