• Title/Summary/Keyword: 시계방향 압력-온도경로

Search Result 10, Processing Time 0.024 seconds

Granulite facies metamorphism of the Punggi area in the Sobeaksan Gneiss Complex -Crustal evolution and environmental geology of the North Sobeagsan Massif, Korea- (풍기지역 소백산편마암복합체의 백립암상 변성작용 -북부 소백산육괴의 지각진화와 환경지질-)

  • 권용완;신의철;오창환;김형식;강지훈
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.183-202
    • /
    • 1999
  • The Sobeaksan Gneiss Complex in the Punggi area is composed of mainly mignatitic gneiss, porphyroblastic gneiss, garnet granitic gneiss and biotitie granitic gneiss. Metamorphic grade increase gradually from the amphibolite facies of northwestern part to the granulite facies of southwestern part in the study area. Representative mineral assemblage in the amphibolite facies is biotite-muscovite-K-feldspar-plagioclase$\pm$garnet$\pm$epidote, needle shape or fibrous sillimanite occur in transitional zone from the amphibolite facies to the granulite facies. In the granulite facies, the garnet-Opx granulite shows garnet-orthopyroxene-biotite-plagioclase, the metabasite shows clinopyroxene-plagioclase$\pm$hornblende$\pm$orthopyroxene$\pm$garnet and the migmatitic gneiss shows garnet-biotite-sillimanite-cordierite$\pm$spinel as representative mineral assemblage. Retrograde metamorphism after the granulite facies metamorphism made corindum and andalusite in the migmatitic gneiss and the thin layer garnet between clinopyroxene and plagioclase in the metabasites. The peak P-T conditions of the migmatitic gneiss and the garnet-Opx granulite are $916^{\circ}C$/6.6 kb and $826^{\circ}C$/6.3 kb, respectively. The P-T condition of biotite and plagioclase inclusion, which indicates the progressive condition of the granulie facies, within garnet is $866^{\circ}C$/7.5 kb and that of rim composition of garnet and biotite is $726^{\circ}C$/4.6 kb, which infer the clockwise P-T path of the granulite facies metamorphism. The temperatures caculated by the rim composition of garnet and biotite in the migmatitic gneiss and garnet granitic gneiss have a wide range of $556-741^{\circ}C$, which indicate that the retrograde metamorphism after the granulite facies metamorphism has effected differently. It is difficult to determine the P-T condition of the biotite granitic gneiss because less occurrence and higher spessartine content of garnet. The P-T condition of the thin layered garnet between clinopytoxene and plagioclase in the metabasite is $635-707^{\circ}C$/4.1-5.3 kb. This texture indicates the isobaric cooling(IBC) condition of the retrogressive metamorphism. As a result, the metamorphic evolution of the Punggi area has undergone the isobaric cooling after the granulite facies metamorphism which has undergone the clockwise P-T path.

  • PDF

옥천변성대 서남부지역 변성퇴적암

  • 김성원;오창환;이덕수;이정후
    • Proceedings of the Petrological Society of Korea Conference
    • /
    • 2002.05a
    • /
    • pp.1-38
    • /
    • 2002
  • 옥천변성대 서남부지역은 변성이질암의 광물조합을 기준으로 남동부부터 북서방향으로 흑운모대, 석류석대, 십자석대의 3개의 변성광물분대로 나누어진다. Oh et al. (1995a)의 연구에서 보고된 남정석들은 산출되지 않는 것이 확인되었고 변성도는 흑운모대에서 석류석대를 거쳐 십자석대로 갈수록 증가한다. 쥬라기 화강암 접촉부의 국부적인 변성암류에서는 화강암에 의한 접촉변성작용에 의해 형성된 홍주석과 규선석이 산출된다. 흑운모대의 변성 압력-온도는 4.2 - 5.1 kb, 400 - 500 $^{\circ}C$이다. 십자석대의 정누대구조를 가지는 석류석과 석류석안의 사장석, 흑운모, 금흥석, 일메나이트포유광물의 공생관계로 추정한 압력-온도 (석류석 주변부: 7.0 - 8.0 kb, 550 - 620 $^{\circ}C$; 석류석 중심부: 4.0 - 5.0 kb, 420 - 520 $^{\circ}C$) 및 십자석대 내에서 후퇴변성작용 및 접촉변성작용 받은 석류석 주변부에 기록된 압력-온도 조건(약 2.0 - 3.0kb, 450 - 55$0^{\circ}C$)과 함께 옥천변성대 서남부지역의 변성암류가 시계방향의 압력-온도 경로를 겪었음을 지시한다. 연구지역 내에서 정밀 기재된 단면들에 대한 퇴적환경을 종합하면 대체 적으로 남동부에서는 천해성 환경이 인지되나 북서쪽으로 갈수록 대륙사면을 거쳐 분지 중심의 환경으로 전이되는 경향을 보인다. 이러한 퇴적상의 공간적 분포는 분지의 남동쪽보다 북서쪽의 침강이 우세하였던 것으로 해석될 수 있으며, 이는 곧 분지가 형성될 때 반지구대 (half graben) 형태로 분지가 열개 (rifting) 되었음을 의미한다. 각 변성분대에서 채취한 변성이질암으로부터 측정된 K-Ar 과 40Ar/39Ar 흑운모와 백운모 연대들은 149 - 167 Ma에 집중된다. 그리고 각 변성분대에서 동일시료에 대한 K-Ar 과 40Ar/39Ar 연대들은 동일시기를 지시함으로 연대적인 신뢰성을 확인 할 수 있었다. 옥천변성대 서남부지역의 변성암류를 관입하는 2개의 괴상의 화강암과 1개의 엽리화강암에서 얻어진 백운모와 흑운모들의 K-Ar 연대는 모두 156 Ma이며 옥천변성대 서남부지역의 변성이 질암의 연대와 유사하다. 이는 연구지역의 변성암류와 화강암류는 40Ar/39Ar 과 K-Ar 계의 흑운모와 백운모의 폐쇄온도 (약 300 - 350 $^{\circ}C$) 까지 동시에 냉각된 사실을 지시한다. 각섬석 편암내의 각섬석들은 복잡한 40Ar/39Ar 연대를 보여주며 일부가 평형연대를 보여주지만 특별한 의미 부여가 힘들다.

  • PDF

옥천변성대의 변성진화에 대한 논평

  • 조문섭;김현철
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.50-50
    • /
    • 2003
  • 옥천변성대의 변성진화사를 밝히기 위한 많은 연구의 결과, 중온-중압형의 최고변성조건(약 490-63$0^{\circ}C$, 4.2-9.4 kbar)과 함께 시계방향의 압력-온도-시간 경로가 알려졌다. 이는 드러스트 나페에 의해 옥천변성대의 지각 두께가 증가했으리라는 제안과 일치한다. 하지만 변성작용에 관련된 조산운동을 규명하는데는 여러 가지 어려움이 남아 있다. 특히 변성시기에 대한 논란은 오랫동안 거듭되어 왔으며, 최근의 연구 결과는 옥천변성대의 최고변성작용 시기를 석탄기와 페름기의 경계 부근인 약 300-280 Ma로 규정짓는다. 또한 소위 황강리층의 화강암질 역에서 구한 SHRIMP U-Pb 저어콘 연대도 오차범위가 크긴 하지만, 석탄기의 열 사건을 지지한다. 이상의 연구결과는 지체구조적으로 중요한 의미를 지니며, 특히 옥천변성대와 태백산분지가 서로 다른 진화 과정을 경험한 별개의 지구조구임을 시사한다. 두 지구조구의 봉합은 약 250-220 Ma 사이에 이루어졌으리라 추정되지만, 보다 자세한 해석을 위해서 신뢰할만한 연대 자료의 축적이 필요하다. 그럼에도 불구하고, 이러한 결과들은 옥천대의 진화과정에 대한 기존의 생각과 일부 배치되며, 새로운 지체구조적 파라다임을 요구한다.

  • PDF

Granulite xenoliths in porphyroblastic gneiss from Mt. Jiri area, SW Sobaegsan massif, Korea (소백산육괴 서남부 지리산지역의 반상변정질 편마암에서 산출되는 백립암질 포획암)

    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.34-45
    • /
    • 1999
  • Mafic granulite xenoliths are found in precambrian porphyroblastic gneiss of the Mt. Jiri area, SW Sobaegsan massif, Korea. The xenoliths are rounded to ellipsoidal in shape, 50-100 cm in length and coarse-grained with granoblastic and foliated texture. The xenoliths consist of orthopyroxene, garnet, biotite, plagioclase, quartz, ilmenite and secondary orthoamphibole. Orthopyroxene is mostly resorbed and rimmed by coronitic orthoamphiboles. Garnets occur as porphyblasts and are zoned with higher pyrope content in cores than in rims. Geothermo-barometry results yield conditions of about $800-850^{\circ}C$, 6 kb and $500^{\circ}C$, 4 kb for early and retrograde stages of equilibration, respectively. According to available geochronological data, it is suggested that the granulite facies metamorphism occurred prior to 2.1-1.9Ga and that the area was superimposed by the high-grade (over $600-700^{\circ}C$) metamorphism between 1.9-1.7Ga, followed by cooling during uplift.

  • PDF

Metamorphic Evolution of the Ogcheon Metamorphic Belt: Review of Recent Studies and Remaining Problems (중부 옥천변성대의 변성진화: 최근의 연구결과 논평 및 문제점)

  • 조문섭;김현철
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.121-137
    • /
    • 2002
  • Metamorphic evolution of the Ogcheon metamorphic belt has been studied by many investigators for the past few decades. P-T conditions of the Ogcheon metamorphic belt were estimated as 4.2-9.4 kbar and $490-630^{\circ}C$, corresponding to the medium-pressure type. In addition, the clockwise P-T-t path suggests a crustal-thickening event in association with the formation of thrust nappes. However, some details on deformation and orogeny of the Ogcheon metamorphic belt have been ambiguous yet. Although the metamorphic age has been also equivocal, recent isotopic studies strongly suggest that the peak metamorphism in the Ogcheon metamorphic belt has occurred at ca. 300-280 Ma between Late Carboniferous and Early Permian. It is thus inferred that the Ogcheon metamorphic belt and the Taebaegsan basin have evolved as separate terranes and that both were sutured at ca. 250-220 Ma. These results are partly in contrast with those of previous workers and require a revised framework for tectonic evolution of the Ogcheon belt. In addition, it is likely that the Ogcheon belt is correlative with the Hida marginal belt and the Hida metamorphic belt.

Geochemistry and Metamorphism of the Amphibolite in the Odesan Gneiss Complex (오대산편마암복합체내에 산출되는 앰피볼라이트의 지화학적 특성과 변성작용)

  • 권용완
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.111-131
    • /
    • 1998
  • The migmatitic gneiss in the Odesan Gneiss Complex has small amount of quartzite, amphibolite and marble and the Kuryong Group which contact with migmatitic gneiss unconformitly, also contains some amphibolite. Preview studies of this area had regarded that the amphibolites contact with marble had been produced by metasomatism from the pelitic and calcareous sediments mixtures, but the amphibolite is reinterpreted as igneous origin. $SiO_2$ content of the amphibolite is 45.9~52.7 wt%, which corresponds to basaltic composition. MgO content has narrow range (4.6~6.87 wt%) and major and trace element are plotted against MgO,$TiO_2, P_2O_5$, Hf, Zr are reduced and Cr and Ni are increased their content with increasing MgO. This phenomenon indicates that the basaltic magma as the protolith of the amphibolite had frationated with the crystallization of the pyroxene and/or olivine. REE pattern has smoothly decrease from LREE to HREE. Eu/Eu(0.83~1.19) show the flat Eu anomaly, which indicate small fractional crystallization of plagioclase. HREE is enriched in the garnet-bearing amphibolites. Several discrimination diagram for the basaltic magma show that the amphibolite of the study area is originated tholeiitic basaltic magma indicating continental rift environment. Due to determine the metamorphic condition garnet-hornblende geothermometry and hornblende-plagioclase geobarometry are used. Peak metamorphic temperature range of the amphibolite $788~870^{\circ}C$ and is deduced toward the northeastern part. The calculated temperature from the amphibolite has slightly higher than the temperature of the metapelites but the trend of metamorphic grade which decrease from western to eastern part progradly is similar to each other. The metamorphic pressure calculated by garnet- hornblede-plagioclase geobarometry is 4~5kb. But ilmenite-plagioclase pair enclosed in garnet show 8 kb at $700^{\circ}C$ by garnet-ilmenite-rutile-plagioclase geobarometery. The zonal profile of garnet in sample 84 shows the bell-shape profile, which grossular content decreases whereas pyrope content increases progressively. This means that the amphibolite has undergone the clockwise P-T-t path which is shown in the migmatitic gneiss of the Odesan Gneiss Complex.

  • PDF

Metamorphism and Deformation of the Late Paleozoic Pyeongan Supergroup in the Taebaeksan Basin: Reviews on the Permo-Triassic Songrim Orogeny (태백산분지에 분포하는 후기 고생대 평안누층군의 변성-변형작용: 페름-삼첩기 송림 조산운동의 고찰)

  • Kim, Hyeong-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.151-171
    • /
    • 2012
  • The Permo-Triassic Songrim orogeny in the Korean peninsula was a major tectonic event involving complicated continental collisions at the eastern margin of Eurasia. Based on the previous studies on the metamorphic and deformations features of the Songrim orogeny, this paper presents metamorphic and structural characteristics and timing of the Songrim orogeny in the Taebaeksan basin, and discuss about correlation of the tectono-metamorphic evolution of the Taebaeksan basin with the Okcheon basin and the Imjingang belt with a combined analysis of bulk crustal shortening direction, metamorphic P-T and T-t (time) paths. The metapelites in the Pyeongan Supergroup in the northeastern margin of the Taebaeksan basin have experienced lower-temperature/medium-pressure (LT/MP) regional metamorphism followed by high-temperature contact metamorphism due to the Jurassic granite intrusion. The earlier LT/MP regional metamorphism produced two loops of clockwise P-T-d (deformation) paths combined with four deformation events ($D_1-D_4$). The first loop concomitant with $D_1$ and $D_2$ occurred at $400-500^{\circ}C$, 1.5-3.0 kbar, and related with growth of syn-$D_1$ chloritoid and andalusite, post-$D_1$ margarite, Ca-rich syn-$D_2$ or post-$D_2$ plagioclase. The second loop accompanying $D_3$ and $D_4$ occurred at $520-580^{\circ}C$, 2.0-6.0 kbar, and associated with the growth of syn-$D_3$ garnet and staurolite, and syn-$D_4$ and/or post-$D_4$ andalusite porphyroblasts. Furthermore the syn-$D_1$ chloritoid and andalusite porphyroblasts grew during E-W bulk crustal shortening, whereas the syn-$D_3$ garnet and staurolite, and the syn-$D_4$ and/or post-$D_4$ andalusite porphyroblasts have grown under N-S bulk crustal shortening. The similarity in the characteristics and timing of the metamorphism and bulk crustal shortening directions between the Okcheon and Imjingang belts suggest that the peak metamorphic conditions tend to increase toward the western part (Imjingang belt and southwestern part of the Gyeonggi Massif) from the eastern part (Taebaeksan basin). The E-W bulk crustal shortening influenced the eastern part of the Okcheon belt, whereas the N-S bulk crustal shortening resulted in strong deformation in the Imjingang and Okcheon belts. Consequently, the Permo-Triassic Songrim orogeny in the Korean peninsula is probably not only related to collision of the North and South China blocks, but also to the amalgamation of terrane fragments at the eastern Eurasia margin (e.g., collision of the Sino-Korean continent and the Hida-Oki terrane).

Metamorphism of the Buncheon and Hongjeas Granitic Gneisses (분천과 홍제사 화강암질 편마암체의 변성작용)

  • 김형수;이종혁
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.61-87
    • /
    • 1995
  • On the basis of lithology, the Precambrian Hongjesa Granitic Gneiss can be locally zoned into granoblastic granitic gneiss, porphyroblastic granitic gneiss, migmatitic gneiss from its center to the marginal part. There are no distinct differences in mineral assemblages by lithologic zoning, but it partly shows the change of mineral assemblage in the adjacent with migmatitic gneiss, thus mineral assemblage can be subdivided into Zone I and Zone II. In terms of mineral compositions, the characteristics of Zone I are coexisting K-feldspar+muscovite+sillimanite. The characteristics of Zone II are (1) breakdown of muscovite, (2) coexisting garnetScordierite, (3) coexisting garnet+cordierite + orthoamphibole. The Buncheon Granitic Gneiss is mainly composed of augen gneiss. In the adjacent area with Honjesa Granitic Gneisses, Buncheon Granitic Gneiss has the mineral assemblage of sillimanite+biotite+K-feldspar+(kyanite). Kyanite occurs as relict grains in the Buncheon and Hongjesa Granitic Gneissess. Kyanite shows anhedral to subhedral form and coexists with sillimanite in only one of these samples. Garnet from a migmatitic gneiss (Zone 11) has relatively high $X_{Fe}$ value in core and rim. Garnet from a porphyroblastic granitic gneiss(Zone I) has relatively homogemeous core but compositionally-zoned rim. Biotites show various colour from greenish-brown, brown to reddish brown at maximum adsorption. Also, the Ti, and Mg content in biotites increases from Zone I to Zone II. The plagioclases shows the chemical composition of $Ab_{84}An_{16}$ -$Ab_{70}An_{30}$ (oligoclase) in Zone I and $Ab_{70}An_{30}$ -$Ab_{50}An_{50}$(andesine) in Zone 11. These variations indicate that the gneisses in the study area experienced a upperamphibolite facies. The presence of kyanite as relict grains indicates that the metamorphic rocks in this area exprienced a high-temperature/medium-pressure type metamorphism, followed by high-temperaturellow-pressure metamorphism. Metamorphic P-T conditions for each gneiss estimated from various geothermobarometers and phase equilibria are 698-$729^{\circ}C$/6.3-11.3 kbar in augen gneiss, 621-$667^{\circ}C$/1.0-5.4 kbar in migmatitic gneiss, and 602-$624^{\circ}C$/1.9-3.4 kbar in porphyroblastic granitic gneiss. These data suggest that the study area was subjected to a clockwise P-T path with isothermal decompression (dP/dT=about 60 bar/$^{\circ}C$).

  • PDF

Metamorphism of the Gyeonggi Massif in the Gapyeong-Cheongpyeong area (가평-청평 지역 경기육괴의 변성작용)

  • Lee Kwang Jin;Cho Moonsup
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.1-24
    • /
    • 1992
  • Precambrian metamorphic rocks of the Gapyeong-Cheongpyeong area consist of banded gneiss, augen gneiss, leucocratic gneiss, quartz schist and quartzite, together with minor intercalations of serpentinite, amphibolite and marble. Mineral assemblages of meta-sedimentary rocks are classified into three types: sillimanite-free; sillimanite-bearing; and sillimanite+K-feldspar-bearing assemblages. Compositions of metamorphic phases depend on the type of mineral assemblages. In particular, the Ca contents of plagioclase and garnet are high in sillimanite-free assemblges. Kyanite occurs in three samples, and coexists with sillimanite in one sample. The presence of kyanite indicates that metamorphic rocks of the study area have experienced the Barrovian type metamorphism. Peak metamorphic conditions estimated from various geothermobarometers and phase equilibria are 618-674$^{\circ}C$ and 6.5${\pm}$2.0 kbar for sillimanite-free assemblages, and 701-740$^{\circ}C$ and 4.4${\pm}$0.8 kbar for sillimanite-bearing assemblages, respectively. Furthermore, a clockwise P-T-time path is deduced for the study area, based on the following observations: (1) the polymorphic transition of kyanite to sillimanite, (2) the occurrence of sillimanite and K-feldspar belonging to the upper amphibolite facies, and finally (3) the retrograde metamorphism characterized by muscovite-, chlorite-, and actinolite-bearing assemblages.

  • PDF

Early Proterozoic Moyitic Series in Daqingshan, Inner Mongolia : Their Characteristics and Tectonis, Magmatic and Thermodynamic Model (내몽고 다큉샨내의 초기원생대 모이아이트계열 : 특성과 지구조, 마그마 그리고 열역학적 모델)

  • Lin CAO;Wei JIN
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.77-85
    • /
    • 1997
  • The Early Proterozoic reworked rock association occurs within the Preacmbrian high grade metamorphic rocks in the area of Daqingshan, Inner Molgolia. In this association, the various large scale ductile deformation belts, form a nappe structure where the foliation steeply dips to north and the lineation ($340^{circ}-30^{\circ}$) plunges at $45^{\circ}55^{\circ}$. This result indicates the subduction/extension with northern part thrusting over the southern part at high angle. The southern subducted microlithon has the characteristics of prograde metamorphism. The northern thrusted microlithon shows the evidence of retrograde metamorphism with decreasing pressure and increasing temperature. The main rock types of Early Proterozoic Moyites are biotite adamellite and syenogranites occurring in the form of small batholiths or stocks and alkali-feldspar granites in veins. The biotite adamellites are progressively contacted with the Archean and Early Proterozoic rocks and contain a great deal of enclaves of metamorphosed rocks, suggesting an anatexis origin. The geochemical characteristics of moyites show the typical features of anatexis granite. At middle to late Early Proterozoic time, the continent-continent collision formed the large scale thrusting and imbrication of Archean basement rocks. According to the mineral assemblage and thermobarometer of Paria et al. (1988) give the following P-T condition : up-faulted block; $700-710^{\circ}C$, 0.72-0.78 Gpa (early stage) and $600^{\circ}C$, 0.44 Gpa (late stage), footwall block; $620^{\circ}C$, 0.8 Gpa (early stage), $620-840^{\circ}C$, 0.64-0.45 Gpa (peak) and $620-630^{\circ}C$, 0.35Gpa (late stage). These results suggest a clockwise P-T-t path (jin et al., 1991, 1994). According to the depth-temperature model in the comperature subduction zone and the experimental data of Wyllie et al. (1983), we propose a tectonic-magmatic-thermal model to account for metamorphism-anatexis of moyite occurring in subduction-shear zone.

  • PDF