• Title/Summary/Keyword: 시간 패턴

Search Result 2,943, Processing Time 0.036 seconds

Feed-forward Learning Algorithm by Generalized Clustering Network (Generalized Clustering Network를 이용한 전방향 학습 알고리즘)

  • Min, Jun-Yeong;Jo, Hyeong-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.5
    • /
    • pp.619-625
    • /
    • 1995
  • This paper constructs a feed-forward learning complex algorithm which replaced by the backpropagation learning. This algorithm first attempts to organize the pattern vectors into clusters by Generalized Learning Vector Quantization(GLVQ) clustering algorithm(Nikhil R. Pal et al, 1993), second, regroup the pattern vectors belonging to different clusters, and the last, recognize into regrouping pattern vectors by single layer perceptron. Because this algorithm is feed-forward learning algorithm, time is less than backpropagation algorithm and the recognition rate is increased. We use 250 ASCII code bit patterns that is normalized to 16$\times$8. As experimental results, when 250 patterns devide by 10 clusters, average iteration of each cluster is 94.7, and recognition rate is 100%.

  • PDF

Extraction of Optimal Moving Patterns of Edge Devices Using Frequencies and Weights (빈발도와 가중치를 적용한 엣지 디바이스의 최적 이동패턴 추출)

  • Lee, YonSik;Jang, MinSeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.786-792
    • /
    • 2022
  • In the cloud computing environment, there has been a lot of research into the Fog/Edge Computing (FEC) paradigm for securing user proximity of application services and computation offloading to alleviate service delay difficulties. The method of predicting dynamic location change patterns of edge devices (moving objects) requesting application services is critical in this FEC environment for efficient computing resource distribution and deployment. This paper proposes an optimal moving pattern extraction algorithm in which variable weights (distance, time, congestion) are applied to selected paths in addition to a support factor threshold for frequency patterns (moving objects) of edge devices. The proposed algorithm is compared to the OPE_freq [8] algorithm, which just applies frequency, as well as the A* and Dijkstra algorithms, and it can be shown that the execution time and number of nodes accessed are reduced, and a more accurate path is extracted through experiments.

Multiagent system for the Life Long Personalized Task Coordination based on the user behavior patterns (사용자 행동패턴을 기반으로 한 멀티 에이전트 시스템 구조)

  • Kim Min-Kyoung
    • Annual Conference of KIPS
    • /
    • 2006.05a
    • /
    • pp.303-306
    • /
    • 2006
  • 유비쿼터스 컴퓨팅의 핵심은 네트워크 환경에 대한 고 가용성이라 할 수 있다. 이러한 사실은 사용자 컨텍스트(Context)가 반영된 서비스를 제공하기 위한 필수조건이 이미 갖추어져 있다는 것을 시사한다. 지금까지 상황인지(Context-Aware) 서비스를 위한 여러 응용들이 제시되어 왔지만, 동적으로 변화하는, 즉 예측하기 어려운 환경을 충분히 반영할 만큼의 유연성을 제공하지 못했다. 왜냐하면, 응용 태스크 시나리오가 시작단계부터 이미 정해져 있었기 때문이다. 여기에, 본 고는 평생동안 개인화된 태스크를 동적으로 생성, 제공할 수 있는 멀티 에이전트 시스템 구조를 제안하고자 한다. 평생 개인화 태스크(Life Long Personalized Task)는 끊임없이 변화하는 사용자의 행동패턴을 반영할 수 있도록, 동적으로 생성, 제공되는 태스크를 의미한다. 이는 태스크 시나리오가 컴파일 타임에 이미 결정되지 않고, 실행 시간 중에 자동으로 생성된다는 것을 의미한다. 이러한 유연성은 평생학습 엔진(Life Long Learning Engine)을 활용함으로써 가능하다. 이 엔진은 사용자의 행동패턴을 학습하며, 결과적으로 사용자 행동패턴 규칙들을 생성한다.

  • PDF

Development of a lipsync algorithm based on A/V corpus (코퍼스 기반의 립싱크 알고리즘 개발)

  • 하영민;김진영;정수경
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.145-148
    • /
    • 2000
  • 이 논문에서는 2차원 얼굴 좌표데이터를 합성하기 위한 음성과 영상 동기화 알고리즘을 제안한다. 영상변수의 획득을 위해 화자의 얼굴에 부착된 표시를 추적함으로써 영상변수를 획득하였고, 음소정보뿐만 아니라 운율정보들과의 영상과의 상관관계를 분석하였으며 합성단위로 시각소에 기반한 코퍼스를 선택하고, 주변의 음운환경도 함께 고려하여 연음현상을 모델링하였다. 입력된 코퍼스에 해당되는 패턴들을 lookup table에서 선택하여 주변음소에 대해 기준패턴과의 음운거리를 계산하고 음성파일에서 운율정보들을 추출해 운율거리를 계산한 후 가중치를 주어 패턴과의 거리를 얻는다. 이중가장 근접한 다섯개의 패턴들의 연결부분에 대해 Viterbi Search를 수행하여 최적의 경로를 선택하고 주성분분석된 영상정보를 복구하고 시간정보를 조절한다.

  • PDF

GPS 데이터를 이용한 이동객체의 이동패턴 분석

  • Jo, Jae-Hui;Seo, Il-Jeong;Lee, Deok-Gyu;Ha, Byeong-Guk
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.603-607
    • /
    • 2007
  • GPS 수신기의 지속적인 가격 하락과 GPS 기반의 다양한 위치기반서비스 개발로 인하여 개인 휴대용 GPS 수신기의 보급이 확대되고 있다. 이동객체의 위치 및 시간 정보를 포함하고 있는 GPS 데이터를 분석하면 이전에는 불가능했던 이동패턴을 파악하고 이해하는 것이 가능해진다. 이동객체 데이터의 저장과 분석에 관한 연구들이 진행되고 있지만, 이동객체의 속성에 따른 다차원적 이동패턴 분석에 관한 연구는 찾아보기 힘들다. 본 연구는 개인 휴대용 GPS 수신기를 통해 수집된 이동 데이터와 이동객체의 속성 데이터를 통합하여 이동객체의 시공간적 특성을 다차원적으로 분석할 수 있는 데이터마트를 구현하고 시각적으로 표현하였다. 이러한 과정을 통해 GPS 데이터를 이용한 이동패턴 분석의 유용성과 문제점을 탐색적으로 살펴보았다.

  • PDF

Performance Improvement of Adaptive Hierarchical Hexagonal Search Using Matching Verification Pattern (정합 검증 패턴을 이용한 적응형 계층 육각 탐색의 성능 개선)

  • Kim, Myoung-Ho;Kwak, No-Yoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2007.02a
    • /
    • pp.79-82
    • /
    • 2007
  • 본 논문은 정합 검증 패턴을 이용한 적응형 계층 육각 탐색의 성능 개선에 관한 것이다. 제안된 방법은 움직임 추정 블록에 시공간적으로 인접한 블록들의 움직임 벡터를 이용하여 움직임 활동도를 정의한 후, 움직임 활동도가 높을 경우 웨이블렛 변환의 다단계 저주파 부영상들로 구성된 피라미드 계층 구조상에서 정합 검증 패턴을 이용한 적응형 계층 육각 탐색을 수행한다. 제안된 방법을 이용할 경우, 정합 검증 패턴을 적용한 검증 과정에서 추가적인 연산량 증가가 초래되지만 이를 상호타협적으로 보상할 수 있는 화질 측면에서의 성능 개선 효과를 기대할 수 있다. 제안된 방법의 타당성과 보편성을 검증하기 위해서로 다른 움직임 특성을 갖는 복수의 영상 시퀀스들을 대상으로 움직임 보상 화질과 수렴시간 측면에서 그 성능을 분석 평가하였다. 컴퓨터 시뮬레이션 결과에 따르면, 제안된 방법은 고속 움직임 탐색이 가능한 적웅형 계층 육각 탐색의 장점을 유지하면서도 움직임 활동도가 높은 영상 시퀀스에서 야기되는 국부 최소 문제를 효과적으로 억제시킴으로써 보상 화질 측면에서 개선된 성능을 제공할 수 있었다.

  • PDF

Semi-Automatic Tree Annotating Workbench Using Neural-Networks (신경망을 이용한 반자동 구문분석 말뭉치 구축도구)

  • 임준호;곽용재;박소영;임해창
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.483-485
    • /
    • 2003
  • 구문분석 말뭉치는 통계적 구문분석 분야의 필수적인 항목으로 많은 유용성을 가지지만, 말뭉치를 구축할 때 막대한 시간과 비용이 요구되기 때문에 구축자의 수작업을 감소시키는 방법에 대한 연구가 필요하다. 본 논문에서는 대량의 신뢰도 있는 구문분석 말뭉치를 구축하기 위해 신경망을 사용하는 반자동 구문 분석 말뭉치 구축도구에 대해서 설명한다. 개발된 도구는 구문패턴 추골, 신경망 학습, 반자동 구축의 세 단계로 구성된다. 구문패턴 추출 단계에서는 사용자가 정의한 자질집합을 사용하여 기존에 구축된 말뭉치에서 구문패턴들을 추출하고, 신경망 학습의 단계에서는 추출된 구문패턴들을 사용하여 신경망을 학습한다. 그리고, 반자동 구축 단계에서는 학습된 신경망을 사용하여 반자동으로 구문분석 말뭉치를 구축한다. 본 논문에서 제안하는 방법은 다양한 자질집합을 조합하여 사용할 수 있고, 학습을 사용하기 때문에 학습 집합에 나타나지 않은 경우에 대해서도 합리적인 결정을 내릴 수 있다. 소량의 구문분석 말뭉치를 대상으로 실험한 결과, 본 논문에서 제안하는 방법이 약 42.5%의 수작업 횟수 감소율을 보였음을 알 수 있었다.

  • PDF

Effect of Airgun Intervals on marine Seismic Acquisition (탄성파 탐사에서 건 간격이 미치는 영향)

  • 유해수
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.483-486
    • /
    • 1998
  • 한국해양연구소 온누리호에 장착된 에어건 배열에서 건 간격에 따른 빔 패턴 변화를 확인하였으며 남극해역에서 획득된 탐사자료와 비교하였다. 컴퓨터 모의과정과 배열 이론을 이용하여 신호진폭 및 빔 폭 변화 등을 시간 및 주파수 영역에서 분석하였다. 154 Hz에서 송이배열 (cluster array) 및 폭 배열 (wide array)의 빔 폭 변화는 배열 형태보다는 건 간격에 큰 영향을 받고 있어 배열 형태가 달라도 빔 폭은 서로 유사하게 변한다. 건 간격이 클수록 송이배열이 90$^{\circ}$의 빔 패턴에서 주엽 (mainlobe)이 최대치가 되는 것과는 달리 폭배열은 0$^{\circ}$에서 최대치를 나타내며 부엽 (sidelobe)은 건 간격과 무관하게 나타난다. 두 배열의 선형간섭이 점차 줄어드는 건 간격은 2.43 m이다. 남극해 탐사자료는 건 간격이 증가함에 따라 주신호 진폭은 약하게 기포는 강하게 증가한다. 이러한 결과는 빔 패턴 변화에서도 마찬가지로 나타나는데 건 간격이 클수록 주엽의 빔 폭이 점차 좁아져 강한 빔 패턴을 나타냄으로서 남극 탐사자료와 서로 잘 일치한다.

  • PDF

FMC's Robot Path Analysis and Design Using Simulation and Sequential patterns (시뮬레이션과 순차 패턴을 이용한 FMC의 로봇 경로 분석 및 설계)

  • Kim, Sun-Gil;Lee, Hong-Chul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.806-809
    • /
    • 2009
  • 본 논문에서는 FMC의 로봇 경로 분석 및 설계를 하기 위해 시뮬레이션을 이용해 FMC의 로봇 패턴을 분석하고 그 결과를 이용해 최적의 로봇 경로를 설계하는 방법을 제시하였다. 전형적인 FMC를 시뮬레이션으로 설계하고 설비에서 신호를 추출 해 순차 패턴 마이닝을 이용해 로봇의 최적 이동 경로를 도출하는 방법을 제시하였다. 이러한 신호의 패턴을 이용한 분석 방법은 로봇의 경로 설계를 도출하기가 용이하여 최적의 경로를 설계하여 FMC에 적용한 결과 기존보다 총 처리량의 증가와 총 처리시간 감소를 가져왔다. 또한 이 방법은 FMC 뿐만 아니라 로봇이 있는 모든 생산라인에 시뮬레이션을 통해 분석이 가능하기 때문에 생산성 향상에 크게 기여할 것으로 기대된다.

  • PDF

A Study for Customer Clustering Mechanism using Automatic Meter Reading Data (자동검침 데이터를 이용한 고객 분류 기법에 대한 연구)

  • Kim, Young-Il;Shin, Jin-Ho;Song, Jae-Ju;Yi, Bong-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.179-180
    • /
    • 2008
  • 배전선로의 효과적인 운영을 위해 최근 들어 자동검침 데이터를 활용한 부하분석에 대한 연구가 진행되고 있다. 일반적인 부하분석 방식은 자동검침 고객의 데이터를 이용하여 대표 부하패턴을 생성하고 이를 이용하여 미 검침 고객의 부하패턴을 생성하여, 전체 배전선로의 회선 및 구간에 대한 15분/시간/일/주/월 단위의 최대부하 및 부하패턴 등을 분석하는 방법이다. 기존에는 고객을 분류하기 위해 계약종별 코드만을 사용하였으나, 같은 계약종별 코드를 갖는 고객이라 하더라도 부하패턴이 다른 경우가 많아서 부하분석의 정확도를 떨어뜨렸다. 본 연구에서는 고객의 계약종별 코드뿐 아니라 다양한 고객속성 정보와 15분 단위 자동검침 데이터를 이용하여 k-means 기법을 통해 고객을 분류하는 방식을 제안하였다.

  • PDF