탄성파 탐사에서 건 간격이 미치는 영향 유해수, 허식, 석봉출, 김한준, 장재경, 박찬홍 한국해양연구소 지질연구부

Effect of Airgun Intervals on marine Seismic Acquisition

Hai Soo Yoo, Sik Hur, Bong Chool Suk, Han Joon Kim, Jai Koung Jang, Chan Hong Park Korea Ocean Research & Development Institute, Marine Geology & Geophysics Division

E-mail: hsyoo@sari.kordi.re.kr

요약

한국해양연구소 온누리호에 장착된 애어 건 배열에서 건 간격에 따른 빔 패턴 변화를 확인하였으며 남국해역에서 획득된 탐사자료 와 비교하였다. 컴퓨터 모의과정과 배열 이론 을 이용하여 신호전폭 및 빔 폭 변화 등을 시간 및 주파수 영역에서 분석하였다.

154 Hz에서 송이배열 (cluster array) 및 폭배열 (wide array)의 빔 폭 변화는 배열 형 태보다는 건 간격에 큰 영향을 받고 있어 배 열 형태가 달라도 빔 폭은 서로 유사하게 변 한다. 전 간격이 클수록 송이배열이 90°의 빔 패턴에서 주엽 (mainlobe)이 최대치가 되는 것과는 달리 폭배열은 0°에서 최대치를 나타 내며 부엽 (sidelobe)은 건 간격과 무관하게 나타난다. 두 배열의 선형간섭이 점차 줄어드 는 건 간격은 2.43 m이다.

남극해 탐사자료는 건 간격이 증가함에 따라 주신호 진폭은 약하게, 기포는 강하게 중가한다. 이러한 결과는 빔 패턴 변화에서도 마찬가지로 나타나는데 건 간격이 클수록 주 엽의 빔 폭이 점차 줍아져 강한 빔 패턴을 나타냄으로서 남극 탐사자료와 서로 잘 일치 한다.

I. 서론

탄성파 음원으로 사용하는 슬리브건은 그 룹이나 배열로 전개하여 사용하는데 이는 음 원의 에너지를 증가시키고 잡음의 원인이 되 는 기포를 감쇄시키기 위함이다. 특히 송이배 열 구조는 가장 넓게 사용되고 있는데 이는 단순히 건 간격을 최적화 하여 기포 진동을 상당히 억제함으로서 보다 나은 신호 파형을 얻기 때문야다. 이러한 건들의 빔 패턴은 주 로 건 간격, 배열길이, 주파수, 용량분포 등에 따라 그 특성이 결정된다. 건을 배열로 사용 하여 간섭 현상이 문제가 될 때는 건 간격을 밀리 떨어뜨리는 방법을 사용하는데 Safar[®] 및 Nooteboorn⁶¹ 등은 간섭이 부시될 수 있는 건 간격을 산출하는 경험식을 구하였다. 반면 에 Strandenes⁽⁹⁾는 건 간격이 기포 평형 반경 (equilibrium radius)의 2.4배 일 때 주신호와 기포의 진폭비 P/B가 최대임을 밝혔다. 한편 Laws⁽⁴⁾는 건 간격이 좁을수록 기포 진폭은 감소하고 주기는 증가함을 밝혔다. Vaage⁽¹⁰⁾ 는 실제 관축을 통하여 선형 중첩으로 구한 방법이 원거리장 파형과 일치하지 않음을 실 험으로 중명한 바 있다.

본 논문에서는 탄성파 음원 배열이 건 간 격이 변할 때 빔 패턴, 남극탐사자료, 원거리 장파형 자료 등을 상호 비교하였다. 그 결과 를 이용, 정확한 건 배열 특성을 확인함으로 써 해양탐사 목적과 환경에 맞게 재 설계가 가능하며, 사전 빔 패턴을 예측함으로서, 탐 사 효율을 높여 양질의 자료를 획득하고자 한다.

Ⅱ. 이론 및 자료획득

1. 해수면 반사파

Fig.1에서처럼 해수면 아래 H m에 위치 한 건 배열에서 θ , φ 각과 구형 대칭으로 전 달되는 음파는 Mikavica^[5]의 배열 이론식을 응용하여 표현할 수 있는데, 직접파와 해수면 에서 $\tau=2H \cos(\theta)/c$ 함수식으로 시간 지연된 해수면 반사파의 합성파는 총 빔 패턴 함수 로 표현할 수 있다^[2]. 총 빔 패턴 $A_{loc}(\theta, \varphi)$ 는

$$A_{wt}(\theta, \varphi) = A_{d}(\theta, \varphi) + A_{r}(\theta, \varphi)$$

= $[F_{\theta}(\theta, \varphi) + F_{\theta}(\pi - \theta, \varphi)e^{\frac{-i2H\cos\theta}{c}}]\theta_{0}$ (1)
+ $[F_{\varphi}(\theta, \varphi) - F_{\varphi}(\pi - \theta, \varphi)e^{\frac{-i2H\cos\theta}{c}}]\varphi_{\theta}$

이며 c는 수중음과 속도인 1500 m/sec이다. 이 건의 빔 패턴은 시간 영역 (time domain) 에서 진폭으로 표시되며 주파수 영역 (frequency domain) 에서는 위상과 신호 진 폭으로 표현된다.

2. 시험자료획득

1993년 1월 남극해에서 온누리호에 탑재된 96 채널 탄성과 장비를 이용하여 건 간격해 따른 간 섭 효과를 고찰하기 위하여 건 깊이 6.5 m, 건 내 부 압력 11.8 MPa에서 2.46 ℓ 건이 선형간섭¹⁷을

Fig. 1. The ghost pulse from a single gun is delayed in time with respect to the primary pulse by $2H\cos\theta/c$.

일으킬 때 원거리장 파형을 획득하였다. 이 시험 자료는 Fig. 2에서 나타나는 것처럼 부피 2.46 ℓ 의 건들을 배열로 하여 두 개 혹은 네 개씩 발파 하여 기록한 것이다. P1 건과 P2 건, P1 건과 P3 건, P3 건과 S3 건 등을 골라 동시에 발파한 자료 를 각 각 Fig. 3의 (a), (b), (c)에 나타내었으며 비교 목적을 위해 2.46 ℓ건을 단순히 두 배한 것 을 (d)에 기록하였다. 각 자료 별로 10 초 씩 기 록하였으며, 수직 중합을 위하여 같은 작업을 10 한편 배열 특성 분석을 하기 위 회 반복하였다. 한 자료는 현장 자료획득과 동일한 위치의 건을 대상으로 휘독하였으며 배열 이론식을 이용하여 빔 패턴을 구하였다. 이때 적용된 필터는 탐사장 비에 내장된 고주파 필터인 154 Hz를 사용하였으 며 해수면 반사파의 영향은 식 (1)을 적용하였다. 사용된 각 건들의 가중치 자료 처리에 (weighting)는 측정 결과 건 부피에 비례하여 주 신호 진폭인 Pa (Peak amplitude)의 세기가 일정 한 비율로 변하지 않음에 따라 탂사에서 건 부피 별로 획득된 자료^[2]를 사용하였다.

Fig. 2. Configuration of the source array on the R/V Onnuri.

Fig. 3. Common shot gathered data were simultaneously shot using two 2.46 ℓ guns.

3. 배열 간격에 따른 빔 패턴

밤 패턴은 건 간격과 신호 파장의 비에 의해 많은 영향을 받는데 긴 간격에 따라 에너지 및 에너지 손상을 나타내는 주엽과 부엽의 빔 패턴 이 어떠한 양상을 나타내는지 확인하였다. Fig. 4 는 건 부피가 2.46 ℓ의 동일한 부피를 갖는 송이 배연 (a), (b), (c)와 폭배열 (d), (e), (f)를 154 Hz 에서 전 간격이 (a)와(d)는 0.46 m, (b)와(e)는 2.9 m. (c)와(f)는 7 m일 경우의 3차원 밤 패턴이다. 이때 폭배열에서는 배열 폭을 7 m로 일정하게 적용하였다. 빔 패턴은 0~-10 dB까지 나타냈으 며 식별이 용이하도록 θ(0-180°), φ(0 - 270°) 부 문만 도시하였다. 폭배열은 건 부피가 2.46 ℓ언 4 개 건을 Pi 2와 Si 3, Pi 3과 Si 3 등을 조합한 것 이며 송이배열의 건 간격이 7 m인 것과 비교하기 위하여 (f)는 건 간격이 7 m일 경우를 가정하여 나타내었다.

그 결과 송이배열은 전반적으로 건 간격이 가 까울수록 빔 폭이 넓어져 주신호의 강도 (primary strength)가 약해지는 반면 건 간격이 멀수록 빔 폭이 좁아져 주신호의 강도가 증가하는 경향을 나타내고 있는데, Dragoset 데의 건 간격이 가까울 수록 주신호의 강도가 감소된다는 주장과 서로 잘 부합되고 있다. 건 간격이 비교적 가까운 Piz 와 PL3 건 사이의 경우에서는 빔 폭이 크게 변하 지 않으나 건 간격이 7 m인 P3 건과 S3 건 사이 에서는 주엽이 급격히 좁아지는 양상을 나타낸다. 이러한 양상에 대해 좀 더 정확한 밤 폭의 변 화를 확인하기 위하여 배열 이론을 이용한 모형 시험 결과를 Fig. 5에 도시하였다. 굵은 실선은 송아배일 건의 빔 폭을 나타내며 건 간격이 2.43 m 까지는 밤 폭의 변화가 없으나 그 이상에서는 급격히 좁아지는 양상을 나타내고 있다. 한편 154 IIz에서 송이배열과 폭배열은 동일한 건 부피와 간격에서는 밤 폭 변화가 거의 일치하고 있음을 나타내고 있다. 그러나 폭배열은 건 간격이 증가 됨에 따라 부엽이 일정한 빔 폭을 나타나는대 이 것은 건 간격과 무관하며 다만 주파수와 관련 있 유올 확인할 수 있다. 즉 빔 폭과 부엽증가가 서 로 상반되게 변함에 따라서 최직주파수 확인이

Fig.4. 3-D radiation pattern for the cluster and wide arrays with gun distance at 154 Hz.

Fig. 5. Beamwidth for the cluster and wide arrays with gun distance

필요한데 유해수^[2]는 폭배열에서 69 Hz 임을 밝 힌바 있으며 주신호의 강도만을 고려할 경우 가 능한 긴 간격을 멀리하는 것이 빔 폭이 좁고 양 호한 파형을 얻을 수 있다.

4. 최적 건 간격

전 사이의 음파 간섭은 건 간격이 무한대일 때 완전히 사라지나, 건 배열 설계시 현실적으로 불 가능하다. 따라서 실질적으로 선형 간섭이 무시될 수 있는 건 간격 D_x에 관한 많은 연구가 수행되 었으며, 슬리브건에 대한 대표적인 경험식으로는 Safar ⁸¹가 구한 식

$$D_s = 6.2 \ V^{1/3} \ (P_i/P_o)^{1/3.23} \tag{2}$$

와 Nooteboom^[6]의 경험식

$$D_s = 5.1 \ V^{1/3} \ (P_i/P_o)^{1/3} \tag{3}$$

등이 있다. 여기서 V, P, P, D,은 각 각 건 내부 부피, 건 내부 압력, 건 외부 압력인 수압, 건 내 부 적경을 뜻한다. Fig. 3은 Fig. 2의 Pi 건과 P2 건, P₁ 건과 P₃ 건, P₃ 건과 S₃ 건을 두 개씩 조합 하여 동시에 반파한 자료이다. 전체적으로 긴 간 격이 증가할수록 주신호 진폭인 Pa는 미약하게 증 가하며 Fig. 3의 관찰에서도 이를 확인할 수 있 다. 특히 2.46 ℓ 건들이 건 간격에 따라 선형간 섭을 일으키지 않고 주 신호 진폭이 증가되어 빔 폭이 좁아질 때 구한 이론 값이 Safar¹⁸⁾는 3.126 m이며 Nooteboom⁶¹은 2.857 m로 배열 이론에 의 해 구한 Fig. 5의 2.43 m 와 비교하면 Nooteboom^[6]의 식에 더 접근한다. 따라서 건 간 격이 2.9 m 이하 되는 P₁, P₂는 선형간섭을 일으 키는 간격 범위 내에 있어 주신호 진폭 증가가 미약하나 건 간격이 7 m인 P3와 S3에서는 급격히 증가하는 양상을 나타낸다. 물론 P3와 S3는 배열 형태상 폭배열에 속하나 한 쌍으로 볼 경우에는 건 간격이 넓은 송이배열에 속하게 된다.

Ⅲ. 배열 특성 분석

1. 배열 효과

건 간격이 △L일 때 빔 폭이 좁고 에너지가 최 대가 되는 조건은 파장이 λ 일 때 △L=λ/2로 표 시된다^[1]. 따라서 긴 간격이 0.46 m, 2.9 m, 7 m 인 경우 효율이 최대가 되는 주파수는 각각 1630, 258, 107 Hz에 속하는 광대역 주파수이다.

폭배열인 경우에도 마찬가지로 범의 양상이 주 파수별로 양호한 특성을 가지려면 준 배열 간격 은 $\lambda/2$ 이상 되어야 한다. 따라서 온누리호 좌현 및 우현의 준 배열 간격이 7 m로 배열 효과를 얻 는 시점 즉, 부엽이 나타나지 않도록 하기 위해서 는 107 Hz 이하로 사용해야한다. 그러나 탐사장 비에 내장된 주파수 필터는 154 Hz이여서 자료 처리시 재 필터를 적용해야한다. 다행히 Fig. 6(a) 에서와 같이 주요 주파수가 50-150 Hz 사이에 분 포하고 있어 재 필터를 적용하여도 문제는 발생 되지 않는다. 일반적으로 폭배열은 배열길이와 준 배열 간격을 같게 사용된다¹⁸. 이것은 폭배열 중 앙 $\lambda/2$ 지점에서 음파 강도가 최대가 되며 MRA (Main Response Axis)가 형성되는데 이때부터 양호한 빔 패턴을 형성하기 때문이다.

2. 배열 특성

송이배열은 방위각 φ가 0°이며 공간적인 연장 이 기본적으로 in-line (θ=90°, φ=0°) 평면으로 구성되며 Fig. 2의 Pi과 P2, P2와 P3이 해당된다. 적용된 가중치는 동일한 진폭 분포로써 정규화 (normalization) 시킨 수치이며 진형적 송이배열인 Fig. 4(a)(b)에서 빔 폭은 179.5°로 넓게 생성되어 탄성파 탐사에 필요한 좁은 법 폭이 생성되지는 않는다. 따라서 저주파수대에서는 빔 폭이 전반적 으로 매우 넓이 양호한 선호 파형이 효과가 크게 기대 되지는 않는다. 한편 폭배열은 가로 및 세로 긴이가 같은 폭으로 설계를 하는 것이 보통이나 온누리호 경우에는 설계 특성상 재한된 길이 7 m × 10.82 m에 16개 건으로 구성된다.

4. 원거리장 파형 분석

Fig. 6은 Western Atlas사에서 제공된 원거리 장 파형 (far-field signature) 자료로서 건 부피가 4.92 ℓ, 건 깊이 5 m, 샘플 율 1 ms 일 때 계산된 경우를 나타낸다. 이때 원거리장 파형은 모서리 주파수 (corner frequency) 256 Hz인 역 알리아샹 필터를 적용하였다. (a)와 (c)는 각각 4.92 ℓ 송 이배열 건의 스팩트럼과 신호 파형을 나타낸다. 원거리장파형은 P/B가 7.55이고 주파수성분이 50-150 Hz 구간에서 양호한 특징을 갖는다. (b)는 2.46 ℓ건을 단순히 두 배하여 나타낸 파형이며 (d)는 (b)와 (c)의 차이를 나타낸 것으로 긴 간격 의 영향을 나타내고 있다. 즉 건 간격이 클수록 주신호 진폭은 미약하며 기포는 크게 증가함을 알 수 있는데 Fig. 3의 남극자료와 Fig. 4 빔 패턴과 잘 일치한다

Fig. 6. Far-field signatures of computer simulated data. (a) amplitude spectra of (c), (b) signatures were amplified two 2.46ℓ guns, (c) signatures for the cluster comprising two 2.46ℓ guns with gun distance 0.43 m, (d) the difference plot between (b) and (c).

Ⅳ. 결론

탄성과 음원에서 배열이론을 이용, 선형 간섭 을 일으키지 않는 건 간격은 2.43 m이며 이는 Nooteboom^[6]의 이론차에 잘 근접한다. 그 결과 송이 및 폭배열은 154 Hz에서 건 간격이 2.43 m 미만에서는 선형간십을 일으켜 빔 폭이 변화가 없으나 그 이상에서는 간섭현상이 줄어 빔 폭이 좁은 양호한 과형을 나타낸다.

남극해 탐사 자료와 원거리장 파형 자료에서 건 간격이 증가됨에 따라 기포 에너지가 상당히 강하게 증가하는 반면, 주신호 진폭이 약간 증가 하는 양상을 보이는데, 이것은 빔 패턴에서도 같 은 양상으로 빔 폭이 좁은 강한 에너지를 나다낸 다. 따라서 주신호의 증가보다는 잡음으로 작용하 는 기포의 증가가 크기 때문에 일정한 간격을 유 지하는 것이 효과적이며 동일한 건 부피와 간격 에서는 빔 폭 변화가 거의 일치한다. 한편 폭매열 에서 부엽의 크기는 건 간격과 무관하게 나다난 다.

참고문헌

- 김정기, "방송 안테나와 전파·전파," 우신출판 사, pp. 135, 1994.
- 유해수, "다중채널 반사파탐사를 위한 획득장 비 특성분석 및 야외변수 최적화 연구." 한양 대학교 학위논문, pp. 188, 1995.
- 3. Dragoset, B., "Seismic data processing technical papers, A Comprehensive method for evaluating the design of airguns and airgun arrays," Western Research, 1984.
- Laws, R.M., L. Hatton and M. Haartsen, "Computer modelling of clustered airguns," First Break, Vol.8, pp. 331–338, 1990.
- 5. Mikavica, M., and Nesic, A., "CAD for linear and planar antenna arrays of various radiating elements." Artech house, INC., pp. 160, 1992.
- Nooteboom, J. J., "Signature and amplitude of linear airgun array," Geophysical prospecting, Vol.26, pp. 194–201, 1978.
- Parkes, G. E., and Hatton, L., "The marine scismic source," D. Reidel Publishing Co. pp.114, 1986.
- Safar, M. H., "The radiation of acoustic waves from an air-gun," Geophysical Prospecting, Vol.24, pp. 756-772, 1976a.
- Strandenes, S., and Vaage S., "Signatures from clustered airguns," First Break, Vol.8, pp. 306-312, 1992.
- Vaage, S., Ursin, B., and Haugland, K., "Interaction between airguns," Geophysical Prospecting, Vol.32, pp. 676–689, 1984.