• Title/Summary/Keyword: 시간압력

Search Result 1,877, Processing Time 0.033 seconds

Creep Analysis for the Pressurized Water Reactor Spent Nuclear Fuel Disposal Canister (가압경수로 고준위페기물 처분용기에 대한 크립해석)

  • Ha Joon-Yong;Choi Jong-Won;Kwon Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.413-421
    • /
    • 2004
  • In this paper, a structural analysis for the pressurized water reactor(PWR) spent nuclear fuel disposal canister which is deposited under the 500m deep underground is carried out to predict the creep deformation of the canister while the underground water and swelling bentonite pressure are applied on the canister. Usually the creep deformation may be caused due to the Pressure and the high heat applied to the canister even though additional external loads are not applied to the canister. These creep deformations depend on the time. In this paper, oかy the underground water and bentonite swelling Pressure are considered for the creep deformation analysis of the canister, because the heat distribution inside canister due the spent fuel is not simple and depends on time. A proper creep function is adopted for the creep analysis. The creep analysis is carried out during $10^8$ seconds. The creep analysis results show that the creep strains are very small and these strains occur usually in the lid and bottom of the canister not in the cast iron insert. A much smaller strain is found in the cast iron insert. Hence, the creep deformation doesn't affect the structural safety of the canister, and also the creep stress which shows the stress relaxation phenomenon doesn't affect the structural safety of the canister.

Evaluation of Structural Response of Cylindrical Structures Based on 2D Wave-Tank Test Due to Wave Impact (파랑충격력에 의한 원형실린더구조물의 구조응답평가)

  • Lee, Kangsu;Ha, Yoon-Jin;Nam, Bo Woo;Kim, Kyong-Hwan;Hong, Sa Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.287-296
    • /
    • 2020
  • The wave-impact load on offshore structures can be divided into green-water and wave-slamming impact loads. These wave impact loads are known to have strong nonlinear characteristics. Although the wave impact loads are dealt with in the current classification rules in the shipping industry, their strong nonlinear characteristics are not considered in detail. Therefore, to investigate these characteristics, wave-impact loads induced by a breaking wave on a circular cylinder were analyzed. A model test was carried out to measure the wave-impact loads due to breaking waves in a two-dimensional (2D) wave tank. To generate a breaking wave, the focusing wave method was applied. A series of 2D tank tests under a horizontal wave impact was carried out to investigate the structural responses of the cylindrical structure, which were obtained from the measured model test data. According to the results, we proposed a structural damage-estimation procedure of an offshore tubular member due to a wave impact load. Furthermore, a recommended wave-impact load is suggested that considers the minimum required thickness of each member. From the experimental results, we found that the required minimum thickness is dependent on the impact pressure located in a three-dimensional space on the surface of a tubular member.

Analysis of Coating Uniformity through Unsteady and Steady State Computer Simulation in Slot Coating (슬롯코팅에서 정상 및 비정상상태 컴퓨터해석을 통한 코팅의 균일성 분석)

  • Woo, Jeong-Woo;Sung, Dal-Je;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.640-644
    • /
    • 2014
  • As a process of plat panel display production, slot coating is widely used for the coating of photoresist on a wide glass substrate. A uniform coating thickness is important, and the coating uniformity is divided into nozzle and machine directions. The machine and nozzle directions coating uniformities are influenced by the operation condition of coater and flow uniformity inside the die, respectively. Non-uniform coating during steady coating process occurs according to those factors, however, non-uniform coating along the machine and nozzle directions has been observed at the beginning of coating by unsteady flow. In this study, steady and unsteady state flow simulations have been performed and compared with experiment to examine the causes of non-uniform coating. Computational results exhibited that it took a time to get a uniform pressure distribution at whole inside the die, and during this period of time edge regions showed lower exit velocity compared with center region. Subsequently edge regions had thinner coated layers than center region. However edge regions showed higher exit velocity than center region after steady state, and this made edge regions had thicker coated layer than center region.

A Study on the Manufacturing Characteristics and Field Applicability of Engineering-scale Bentonite Buffer Block in a High-level Nuclear Waste Repository (고준위폐기물처분장 내 공학규모의 균질 완충재 블록 성형특성 및 현장적용성 분석)

  • Kim, Jin-Seop;Yoon, Seok;Cho, Won-Jin;Choi, Young-Chul;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.123-136
    • /
    • 2018
  • The objective of this study is to propose a new methodology to fabricate a reliable engineering-scale buffer block, which shows homogeneous and uniform distribution in buffer block density, for in-situ experiments. In this study, for the first time in Korea, floating die press and CIP (Cold Isostatic Press) are applied for the manufacture of an engineering-scale bentonite buffer. The optimized condition and field applicability are also evaluated with respect to the method of manufacturing the buffer blocks. It is found that the standard deviation of the densities obtained decreases noticeably and that the average dry density increases slightly. In addition, buffer size is reduced by about 5% at the same time. Through the test production, it is indicated that the stress release phenomenon decreases after the application of the CIP method, which leads to a reduction in crack generation on the surface of the buffer blocks over time. Therefore, it is confirmed that the production of homogeneous buffer blocks on industrial scale is possible using the method suggested in this study, and that the produced blocks also meet the design conditions for dry density of buffer blocks in the AKRS (Advanced Korea Reference Disposal System of HLW).

The Usefulness of a Wearable Smart Insole for Gait and Balance Analyses After Surgery for Adult Degenerative Scoliosis: Immediate and Delayed Effects (척추측만증 환자의 수술 효과 평가 수단으로서 웨어러블 스마트 깔창을 이용한 보행분석의 유용성)

  • Seo, Min Seok;Shin, Myung Jun;Kwon, Ae Ran;Park, Tae Sung;Nam, Kyoung Hyup
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.2
    • /
    • pp.184-192
    • /
    • 2020
  • This study presents a gait analysis method (including time series analysis) using a smart insole as an objective and quantitative evaluating method after lumbar scoliosis surgery. The participant is a degenerative lumbar scoliosis patient. She took 3-min-gait-test four times(before and 8, 16, and 204-days after surgery) and 6-min-gait-test once(204-days after surgery) with smart-insoles in her shoes. Each insole has 8-pressure sensors, an accelerometer, and a gyroscope. The measured values were used to compare the characteristics of gait before and after surgery. The analysis showed that all of the patient's gait parameters improved after surgery. And after 6 months, the gait was more stable. However, after long walk, the swing duration of one leg was slightly shorter than that of the other again. It was a preclinical problem that could not be found in the visual examination by the practitioner. With this analysis method we could evaluate the improvement of patient quantitatively and objectively. And we could find a preclinical problem. This analysis method will lead to the studies that define and distinguish gait patterns of certain diseases, helping to determine appropriate treatments.

Research on Classification of Sitting Posture with a IMU (하나의 IMU를 이용한 앉은 자세 분류 연구)

  • Kim, Yeon-Wook;Cho, Woo-Hyeong;Jeon, Yu-Yong;Lee, Sangmin
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2017
  • Bad sitting postures are known to cause for a variety of diseases or physical deformation. However, it is not easy to fit right sitting posture for long periods of time. Therefore, methods of distinguishing and inducing good sitting posture have been constantly proposed. Proposed methods were image processing, using pressure sensor attached to the chair, and using the IMU (Internal Measurement Unit). The method of using IMU has advantages of simple hardware configuration and free of various constraints in measurement. In this paper, we researched on distinguishing sitting postures with a small amount of data using just one IMU. Feature extraction method was used to find data which contribution is the least for classification. Machine learning algorithms were used to find the best position to classify and we found best machine learning algorithm. Used feature extraction method was PCA(Principal Component Analysis). Used Machine learning models were five : SVM(Support Vector Machine), KNN(K Nearest Neighbor), K-means (K-means Algorithm) GMM (Gaussian Mixture Model), and HMM (Hidden Marcov Model). As a result of research, back neck is suitable position for classification because classification rate of it was highest in every model. It was confirmed that Yaw data which is one of the IMU data has the smallest contribution to classification rate using PCA and there was no changes in classification rate after removal it. SVM, KNN are suitable for classification because their classification rate are higher than the others.

Dosimetric Properties of LiF:Mg,Cu,Na,Si TL pellets (LiF:Mg,Cu,Na,Si TL 소자의 선량계적 특성)

  • Nam, Young-Mi;Kim, Jang-Lyul;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • Sintered LiF:Mg,Cu,Na,Si thermoluminescence (TL) pellets were developed for application in radiation dosimetry. In the present study, the TL dosimetric properties of LiF:Mg,Cu,Na,Si TL pellets have been investigated for emission spectrum, dose response, energy response, and fading characteristics. LiF:Mg,Cu,Na,Si TL pellets were made by using a sintering process, that is, pressing and heat treatment from TL powders. Photon irradiations for the experiments were carried out using X-ray beams and a $^{137}Cs$ gamma source at the Korea Atomic Energy Research Institute (KAERI). The average energies and the dose were in the range of 20-662 keV and $10^{-6}-10^{-2}\;Gy$, respectively. The glow curves were measured with a manual type TLD reader(System 310, Teledyne) at a constant nitrogen flux and a linear heating rate. For a constant heating rate of $5^{\circ}C\;s^{-1}$, the main dosimetric peak of glow curve appeared at $234^{\circ}C$, the activation energy was 2.34 eV and frequency factor was $1.00{\times}10^{23}$. TL emission spectrum is appeared at the blue region centered at 410 nm. A linearity of photon dose response was maintained up to 100 Gy. The photon energy responses relative to $^{137}Cs$ response were within ${\pm}20%$ at overall photon energy region. The fading of TL sensitivity of the pellets stored at the room temperature was not found for one year.

  • PDF

Study on the IPMC electrical characteristic change For the utilization of Ocean Current Energy (IPMC 해양 발전 플랜트 모니터링 시스템)

  • Son, Kyung-Min;Kim, Min;Kim, Hyun-jo;Park, Gi-Won;Byun, Gi-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.914-916
    • /
    • 2013
  • Renewable energy from the environment in a variety of ways to obtain various forms of energy. Recent functional polymer composites (EAP) to take advantage of the pressure and vibration of physical energy into electrical energy storage, to take advantage of current collector technology is attracting attention. EAP, a type of IPMC (Ionic exchange Polymer Composite) got a hydrophilic properties, marine power plants is being studied as a source of energy. Studies using IPMC marine power plant because there is a constraint on the time, IPMC in real time, which can measure the power generated by the system is required, Due to the nature of the power plant to be floating in the sea through the power cable and data transmission measurement system is hard drive self-generation and wireless data transmission system is required. In this study, IPMC marine power plant is to develop a system of monitoring. IPMC for several power plants to build individual current-voltage measurement system, CAN communication with the main system to collect all the information and wireless data transmission to occur, and Generation of electricity using solar energy to building systems in real-time without an external power supply to drive the measuring system is to develop a monitoring system.

  • PDF

Size Verification of Small and Large Bubbles in a Bubble Column (기포탑에서 작은기포와 큰기포의 크기 구별)

  • Seo, Myung Jae;Jin, Hae-Ryong;Lim, Dae Ho;Lim, Ho;Kang, Yong;Jun, Ki-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.304-309
    • /
    • 2012
  • Size verification of small and large bubbles in a bubble column was investigated by employing the dynamic gas disengagement (DGD) method and dual electrical resistivity probe (DRP) method, simultancously. The holdups of large and small bubbles in the bubble column in a given operating condition were obtained by means of the DGD method by measuring the pressure drop variation in the column with a variation of time after stopping the gas input into the column. The size and frequency of bubbles were measured by the DRP method in the same operating condition, from which the bubble holdup of each range of size was obtained. The verification of size in determining the large or small bubbles was decided by comparing the holdups of large or small bubbles measured by the DGD method with that measured by the DRP method. Filtered compressed air and tap water were used as a gas and a continuous liquid medium. The diameter and height of the bubble column were 0.102 m and 1.5 m, respectively. The demarcation size between the large and the small bubbles in the bubble column was 4.0~5.0 mm; the demarcation size was about 5.0 mm when the gas velocity was in the relatively low range, but about 4.0 mm when the gas velocity was in the relatively high range, within this experimental conditions.

A Study of Thermo-Mechanical Analysis for the Design of High Pressure Piping System for Natural Gas Fuel Vessel (천연가스 연료선박의 고압 이중 배관 설계를 위한 열-구조 해석에 관한 연구)

  • Park, Seong-Bo;Sim, Myung-Ji;Kim, Myung-Soo;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • LNG (liquefied natural gas) is considered the best alternative eco-fuel, and many studies on the LNG fuel system have been performed to use LNG as the fuel for ships. For the LNG fuel supply system, natural gas transfers from the vaporizer to the engine in the gaseous state with a temperature of $50^{\circ}C$ and a pressure of 35MPa. Therefore, a structural safety evaluation of the double-walled pipelines considering thermal load is essential. In this article, an uniaxial tensile test for super duplex stainless steel, material for double-walled pipe, according to the annealing time was carried out to analyze the thermal effect. In addition, thermo-structural analysis of the high temperature-high pressure double-walled pipe with fixed supports that are now used widely was carried out to evaluate the structural safety. To minimize stress concentration of the connection point between the support and inner pipe, the shapes of the new type support that can slip through inner pipe were proposed, and the supports which has best structural performance was selected using the results from the thermo-structural analyses of new supports and an analysis of the whole double-walled pipeline was performed to ensure structural safety. These results can be used as a database for the design of double-walled pipelines and sliding support.