• Title/Summary/Keyword: 시간동기(time synchronization)

Search Result 435, Processing Time 0.029 seconds

A Design of Time Model for Synchronization of sptio-temporal data on a Mobile Environments (모바일 환경에서 시공간 데이터의 동기화를 위한 시간 모델 설계)

  • Kim, Hong-Ki;Cho, Dae-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.207-210
    • /
    • 2009
  • The time information of sptio-temporal data in synchronization system of a mobile environment can be applied according to time data of various kinds. However, that previous data is synchronized related with progress of synchronization operation is a problem when saving the time data of sptio-temporal data depends on the registration time. In this paper, classifies the time used as time data for synchronization data, defines time data model suitable for synchronization of sptio-temporal data and suggests a synchronization system which uses time data model.

  • PDF

Time Synchronization of the Monitoring Data for the VoIP User Assessment of Voice Quality Measurement (인터넷전화 이용자 체감품질 측정을 위한 측정데이터 간의 시간동기화)

  • Kweon Tae-Hoon;Hwang Hyae-Jeong;Lee Seog-Ki;Song Han-Chun;Won Seung-Young
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.4
    • /
    • pp.227-236
    • /
    • 2005
  • We study, in terms of VoIP user assessment of voice quality, the synchronization of measurement system is important. Commonly the synchronization system uses NTP(Network Time Protocol) or GPS(Global Positioning System), these synchronization method has time error of distance, system overhead of data processing, and system specialized clock error. we propose and implement the synchronization method to correct time error between two measurement system in the internet. So the time synchronization of systems can get time error, then user assessment of voice quality become reliable.

  • PDF

Group Synchronization Method Using Adaptive Synchronization Delay Time for Media Streaming (미디어 스트리밍을 위한 적응적 동기 지연시간을 이용한 그룹 동기화 기법)

  • Kwon, Dongwoo;Ok, Kisu;Kim, Hyeonwoo;Ju, Hongtaek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.506-515
    • /
    • 2015
  • In this paper, we propose a group playback synchronization method using adaptive synchronization delay time by the bit rate of media to synchronize a play position of streaming media between mobile smart devices. This method consists of streaming server-side and client-side synchronization algorithms based on synchronization delay time which includes connection time, control packet transmission time, streaming data buffering time, and synchronization processing time. We implement the Android media player application with synchronization support using the proposed algorithms and present the result of performance evaluation.

A Time Synchronization Method of Sensor Network using Single Flooding Algorithm (단일 플러딩 라우팅 알고리즘을 활용한 센서 네트워크의 시간 동기화 기법)

  • Shin, Jae-Hyuck;Kim, Young-Sin;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.18C no.1
    • /
    • pp.15-22
    • /
    • 2011
  • Usually time synchronization is performed after routing tree is constructed. This thesis proposes a time synchronization algorithm combined with single-flooding routing tree construction algorithm in a single path. TSRA (Time Synchronization Routing Algorithm) uses routing packets to construct a routing tree. Two types of time information are added to the routing packet: one is the packet receiving time, and the other is the packet sending time. Time offset and transmission time-delay between parent node and child node could be retrieved from the added time information using LTS (Lightweight Time Synchronization) algorithm. Then parent node sends the time offset and transmission time to children nodes and children nodes can synchronize their time to the parent node time along the routing tree. The performance of proposed algorithm is compared to the TPSN (Timing-sync Protocol for Sensor Networks) which is known to have high accuracy using NS2 simulation tool. The simulation result shows that the accuracy of time synchronization is comparable to TPSN, the synchronization time of all sensor nodes is faster than TPSN, and the energy consumption is less than TPSN.

An Efficient symbol Synchronization Scheme with an Interpolator for Receiving in OFDM (OFDM 방식의 수신기를 위한 보간기의 효율적인 심볼 동기방법의 성능분석)

  • 김동옥;윤종호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.574-577
    • /
    • 2002
  • In this paper, we propose a new symbol time synchronization scheme suitable for the OFDM system with an interpolator. The proposed performs the following three steps. In the first step, the coarse symbol time synchronization is achieved by continuously measuring the average power of the received envelope signal. Based on this average power, the detection possibility for the symbol time synchronization is determined. If the signal is sufficient for synchronization, we next perform a relatively accurate symbol time synchronization by measuring the correlation a short training signal and the received envelope signal. Finally, an additional frequency synchronization is performed with a long training signal to correct symbol synchronization errors caused by the phase rotation. From the simulation results, one can see that the proposed synchronization scheme provides a good synchronization performance over frequency selective channels.

  • PDF

Implementation and Evaluation of a Time Synchronization Protocol for USN (USN을 위한 시간 동기화 프로토콜의 구현 및 평가)

  • Yang, Tao;Lee, Hyung-Bong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.213-220
    • /
    • 2008
  • In a distributed processing environment composed of many independent systems connected by networks, it is very important and difficult to make time synchronization between the systems. Especially in the USN environment the time synchronization is still more difficult than in general distributed processing environment because energy is limited and communication function is feeble. Even though of these difficulties, the USN environment requires higher precision of time synchronization. We of the typical applications requesting very strict time synchronization in USN is TDMA MAC. This paper proposes and evaluates a new time synchronization protocol HTSP(Hierarchical Time Synchronization Protocol) which is an advanced version of the FTSP(Flooding Time Synchronization Protocol) published recently. The time synchronization precision of the HTSP is equal to that of the FTSP, but the energy consumption of the HTSP is lower than that of the FTSP owing to the reduced number of broadcast messages. The simulation results show that the energy consumption of the HTSP is only 74% of that of the FTSP.

  • PDF

A Time Synchronization Protocol of Sensor Nodes Combining Flooding-Routing Protocol with Bidirectional LTS (플러딩 라우팅 프로토콜과 양방향 LTS를 결합한 센서 노드의 시간 동기화 기법)

  • Shin, Jae-Hyuck;Oh, Hyun-Su;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.18C no.2
    • /
    • pp.119-126
    • /
    • 2011
  • In wireless sensor networks Time synchronization used to be performed after routing tree is constructed. It results in increasing the number of packets and energy consumption. In this paper, we propose a time synchronization algorithm combined with flooding routing tree construction algorithm, which applies LTS (Lightweight Time Synchronization) information packed into the forwarding and backward routing packets. Furthermore, the proposed algorithm compensates the time error due to clock drift using the round time with fixed period. We prove that the proposed algorithm could synchronize the time of among sensor nodes more accurately compared to TSRA (Time Synchronization Routing Algorithm) using NS2 simulation tool.

Implementation of IEEE 1588v2 PTP for Time Synchronization Verification of Ethernet Network (이더넷 네트워크의 시간 동기화 검증을 위한 IEEE 1588v2 PTP 구현)

  • Kim, Seong-Jin;Ko, Kwang-Man
    • The KIPS Transactions:PartA
    • /
    • v.19A no.4
    • /
    • pp.181-186
    • /
    • 2012
  • The distributed measurement and control system require technology to solve complex synchronization problem among distributed devices. It can be solved by using IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems to synchronize real-time clocks incorporated within each component of the system. In this paper, we implemented the IEEE 1588v2 PTP emulator on BlueScope BL6000A using a delay request-response mechanism to measure clock synchronization.

Convergence Analysis of Distributed Time and Frequency Synchronization Algorithm for OFDMA-Based Wireless Mesh Networks Using Bio-Inspired Technique (생체모방 기법을 활용한 OFDMA기반 무선 메쉬 네트워크의 분산 시간 및 주파수 동기화 알고리듬의 수렴성 분석)

  • Kim, Mi-Jeong;Choi, Joo-Hyung;Cho, Young-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.8
    • /
    • pp.488-490
    • /
    • 2014
  • This paper deals with distributed time and frequency synchronization algorithms using the flocking technique for OFDMA-based wireless mesh networks. We propose a time and frequency synchronization model taking into account channel propagation delays existing in wireless mesh networks, and analyze the convergence condition of the proposed synchronization algorithm. Convergence performance of the proposed synchronization algorithm is analyzed via computer simulation in terms of synchronization parameters in the time and frequency synchronization model.

Clock Synchronization in Wireless Embedded Applications (무선 임베디드 환경에서의 시간 동기화)

  • No, Jin-Hong;Hong, Young-Sik
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.6
    • /
    • pp.668-675
    • /
    • 2005
  • With the proliferation of wireless network and the advances of the embedded systems, the traditional distributed systems begin to include the wireless embedded systems. Clock synchronization in the distributed systems is one of the major issues that should be considered for diverse Purposes including synchronization, ordering, and consistency. Many clock synchronization algorithms have been proposed over the years. Since clock synchronization in wireless embedded systems should consider the low bandwidth of a network and the poor resources of a system, most traditional algorithms cannot be applied directly. We propose a clock synchronization algorithm in wireless embedded systems, extending IEEE 802.11 standard. The proposed algorithm can not only achieve high precision by loosening constraints and utilizing the characteristics of wireless broadcast but also provide continuous time synchronization by tolerating the message losses. In master/slave structure the master broadcasts the time information and the stave computes the clock skew and the drift to estimate the synchronized time of the master. The experiment results show that the achieved standard deviation by the Proposed scheme is within the bound of about 200 microseconds.