• Title/Summary/Keyword: 시각자료 해석

Search Result 137, Processing Time 0.024 seconds

Prospects of future changes of hydrological characteristics in South-North Korea river basin according to climate change scenarios (기후변화시나리오를 반영한 남북공유하천유역의 미래 수문특성 변화 전망)

  • Yeom, Woongsun;Park, Dong-Hyeok;Ahn, Jaehyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.266-266
    • /
    • 2020
  • 본 연구에서는 기후변화로 인한 남북공유하천유역의 미래 수문특성 변화를 전망하기 위해 ArcGIS 프로그램을 통해 산정된 격자형 수문특성 매개변수를 분포형 모형인 GRM에 적용하여 임진강유역의 미래 유출수문특성 변화를 분석하였다. 분포형 모형에 사용되는 강우량 자료는 기상관측소 단위로 상세화된 13개 전지구 기후 모델 중 RCP4.5, 8.5 시나리오의 공유하천유역 인접 11개 관측소별 빈도해석 결과를 시·공간적으로 분포하여 사용하였다. 또한 미래기간별 유출특성 변화추이를 분석하기 위하여 참조기간(1981-2005), 21세기 전반기(F1, 2011-2040), 중반기(F2, 2041-2070), 후반기(F3, 2071-2100)로 구분하여 분석을 실시하였다. 분석 결과 본 연구의 대상지점인 임진강유역은 기후변화로 인해 확률강우량이 증가하여 유역의 유출수문특성에 직접적인 영향이 있을 것으로 예측되었다. RCP 4.5 시나리오에서는 21세기 후반기인 F3에 확률강우량 및 유출량의 증가추세가 줄어들 것으로 전망되나, 참조기간 대비 F1에서 20.4%, F2에서 35.7%, F3에서 34.6%의 평균 유출량 증가율을 보였으며, RCP 8.5 시나리오에서는 F1에서 19.9%, F2에서 38.3%, F3에서 67.8%로 지속적인 증가가 전망되었다. 또한 첨두홍수량 발생시각은 참조기간 대비 약 4.6~13.3% 감소가 예상되었다. 기후변화로 인한 홍수량의 변화는 재해위험을 증가시킬 수 있으며, 이러한 상황에서 남한과 북한의 협력을 통한 유역통합관리의 필요성은 점차 커질 것으로 보인다. 이를 위해서는 정확한 수문학적 분석을 선행하여야 하며, 본 연구가 남북공유하천유역의 재해위험을 평가하는 기초자료로 활용될 수 있을 것으로 판단된다.

  • PDF

A Study on the Visual Representation of TREC Text Documents in the Construction of Digital Library (디지털도서관 구축과정에서 TREC 텍스트 문서의 시각적 표현에 관한 연구)

  • Jeong, Ki-Tai;Park, Il-Jong
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.3
    • /
    • pp.1-14
    • /
    • 2004
  • Visualization of documents will help users when they do search similar documents. and all research in information retrieval addresses itself to the problem of a user with an information need facing a data source containing an acceptable solution to that need. In various contexts. adequate solutions to this problem have included alphabetized cubbyholes housing papyrus rolls. microfilm registers. card catalogs and inverted files coded onto discs. Many information retrieval systems rely on the use of a document surrogate. Though they might be surprise to discover it. nearly every information seeker uses an array of document surrogates. Summaries. tables of contents. abstracts. reviews, and MARC recordsthese are all document surrogates. That is, they stand infor a document allowing a user to make some decision regarding it. whether to retrieve a book from the stacks, whether to read an entire article, etc. In this paper another type of document surrogate is investigated using a grouping method of term list. lising Multidimensional Scaling Method (MDS) those surrogates are visualized on two-dimensional graph. The distances between dots on the two-dimensional graph can be represented as the similarity of the documents. More close the distance. more similar the documents.

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

An Object-Based Verification Method for Microscale Weather Analysis Module: Application to a Wind Speed Forecasting Model for the Korean Peninsula (미기상해석모듈 출력물의 정확성에 대한 객체기반 검증법: 한반도 풍속예측모형의 정확성 검증에의 응용)

  • Kim, Hea-Jung;Kwak, Hwa-Ryun;Kim, Sang-il;Choi, Young-Jean
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1275-1288
    • /
    • 2015
  • A microscale weather analysis module (about 1km or less) is a microscale numerical weather prediction model designed for operational forecasting and atmospheric research needs such as radiant energy, thermal energy, and humidity. The accuracy of the module is directly related to the usefulness and quality of real-time microscale weather information service in the metropolitan area. This paper suggests an object based verification method useful for spatio-temporal evaluation of the accuracy of the microscale weather analysis module. The method is a graphical method comprised of three steps that constructs a lattice field of evaluation statistics, merges and identifies objects, and evaluates the accuracy of the module. We develop lattice fields using various evaluation spatio-temporal statistics as well as an efficient object identification algorithm that conducts convolution, masking, and merging operations to the lattice fields. A real data application demonstrates the utility of the verification method.

A Study on the Visual Preference of Users according to the Location of Benches at Urban Community Parks (도시공원에서 벤치의 배치장소에 따른 이용자의 시각적 선호도에 관한 연구)

  • 유상완;문석기;권상준
    • Archives of design research
    • /
    • v.13 no.2
    • /
    • pp.95-102
    • /
    • 2000
  • The purpose of this study is to find out what is the preference of users according to the location of benches at urban community parks. This location of benches is seperated into 4 patterns according to arranging pattern of water space, a walk, pergola and shelter, greenspace. To investigate the visual preference is examined by analyzing visual volume of 4 patterns. Results are as follows; 1. Factor analysis by the total data showed that 5 factors explain 60.40 percent of total variance of the location of bench visual character. They were classified by the sensitive factor, visual factor, physical-individual factor, distinct factor, density factor. Among 5 factors, the sensitive factor which represented psychological reaction was appreciated to be highest. 2. Most of 20 items showed the following scores of mean values in sementic differential experiment : Spot 1->Spot 4-> 2-> 3. The mean values between arrangement place locational differences showed significantly, that could explain to be a violent contrast between the natural factors(weater space, green space, etc) and the artificial factors (around of pergola, shelter, etc)

  • PDF

Changes in the Teaching Expertise of Teachers Participating in an In-School Professional Learning Community for Elementary Science Instructional Research (초등과학 수업 연구를 위한 학교 안 전문적 학습공동체 참여 교사들의 수업 전문성 변화 양상)

  • Kim, Eun Seo;Lee, Sun-Kyung
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.185-200
    • /
    • 2024
  • This study explored the changes in the elementary science teaching expertise of teachers who participated in an in-school professional learning community for elementary science instructional research. Six elementary school teachers from grades 4, 5, and 6 at an 18-class S elementary school in a medium-sized city in Chungcheongbuk-do conducted collaborative instructional research on elementary science lessons as part of an in-school professional learning community, which was held 26 times over 7 months in 2020. During the professional learning community, video and audio recordings of the activities, research lessons, course materials, and professional learning community reflection activities were collected for analysis. The collected data were analyzed using qualitative research methods; data processing, reading, note-taking, description, classification, interpretation, reporting, and visualization; and the instructional professionalism elements were extracted based on the instructional professionalism framework. In the early professional learning community activity stages, the participating teachers first discussed their teaching perspectives, their experiences, and their goals for teaching science, which resulted in a selection of research questions. The teachers then collaboratively designed and implemented research lessons for each grade level, after which lesson reflections were conducted. The teachers' abilities to engage in qualitative reflection on the research questions improved after each reflection iteration. It was found that this professional learning community collaborative lesson study experience positively contributed to teaching expertise development. Based on the study findings, the implications for using professional learning communities to improve elementary teachers' science teaching expertise are given.

A Study of symbols based on characteristics of kind of garden space -Focusing on the target area of the artist's garden exhibited at the Seoul Garden Fair in 2017- (정원 공간 유형의 특성에 근거한 기호화 연구 -2017년 서울 정원박람회에 출품된 작가정원의 대상지를 중심으로-)

  • Kim, Da Kyung;Jun, Hyung Soon;Yoo, Taek Sang;Wang, Kyung Hee
    • Journal of the Korean Society of Floral Art and Design
    • /
    • no.40
    • /
    • pp.97-123
    • /
    • 2019
  • The purpose of this study is to analyze the spatial characteristics of the unit of garden and to classify and symbolize it, to provide the basis for analyzing the works based on the characteristics of the space and to provide the data that can become the logical foundation for garden design. The research method first analyzed the behavioral scene analysis and the grounded theory methodology as the theory about the space type. It controls the subjectivity of the researcher and derives the characteristics of the space for the garden image based on the experiential knowledge of the expert, It is a qualitative analysis method that aims to increase credibility. The actual case target was the author garden which was exhibited at the 2017 Seoul Garden Expo. Through this process, we have simplified the characteristics of the space and the positives and negatives accordingly. We have grasped the relationship between spatial space, sculptural space, architectural space, and environmental space.. Research on qualitative topics such as the characteristics of space can not completely exclude the subjectivity of the researcher in terms of its characteristics, but such research can provide a rationale for interpreting and evaluating the gardens that depend on the individual's taste.. It can also contribute to the development of the field by providing reference materials for garden designs that rely on designer intuition, or by providing a logical basis for design.

Numerical Analysis of Nonlinear Shoaling Process of Random Waves - Centered on the Evolution of Wave Height Distribution at the Varying Stages of Shoaling Process (불규칙 파랑 비선형 천수 과정 수치해석 - 천수 단계별 파고분포 변화를 중심으로)

  • Kim, Yong Hee;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.106-121
    • /
    • 2020
  • In order to make harbor outskirt facilities robust using the reliability-based design, probabilistic models of wave heights at varying stage of shoaling process optimized for Korean sea waves are prerequisite. In this rationale, we numerically simulate the nonlinear shoaling process of random waves over the beach with a sandbar at its foreshore. In doing so, comprehensive numerical models made of spatially filtered Navier-Stokes Eq., LES [Large Eddy Simulation], dynamic Smagorinsky turbulence closure were used. Considering the characteristics of swells observed at the east coast of Korean Peninsula, random waves were simulated using JONSWAP wave spectrum of various peak enhancement coefficients and random phase method. The coefficients of probabilistic models proposed in this study are estimated from the results of frequency analysis of wave crests and its associated trough detected by Wave by Wave Analysis of the time series of numerically simulated free surface displacements based on the threshold crossing method. Numerical results show that Modified Glukhovskiy wave height distribution, the most referred probabilistic models at finite water depth in the literature, over-predicts the occurring probability of relatively large and small wave heights, and under predicts the occurrence rate of waves of moderate heights. On the other hand, probabilistic models developed in this study show vary encouraging agreements. In addition, the discrepancy of the Modified Glukhovskiy distribution from the measured one are most visible over the surf zone, and as a result, the Modified Glukhovskiy distribution should be applied with caution for the reliability-based design of harbor outskirt facilities deployed near the surf-zone.

The Accuracy Assessment of Species Classification according to Spatial Resolution of Satellite Image Dataset Based on Deep Learning Model (딥러닝 모델 기반 위성영상 데이터세트 공간 해상도에 따른 수종분류 정확도 평가)

  • Park, Jeongmook;Sim, Woodam;Kim, Kyoungmin;Lim, Joongbin;Lee, Jung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1407-1422
    • /
    • 2022
  • This study was conducted to classify tree species and assess the classification accuracy, using SE-Inception, a classification-based deep learning model. The input images of the dataset used Worldview-3 and GeoEye-1 images, and the size of the input images was divided into 10 × 10 m, 30 × 30 m, and 50 × 50 m to compare and evaluate the accuracy of classification of tree species. The label data was divided into five tree species (Pinus densiflora, Pinus koraiensis, Larix kaempferi, Abies holophylla Maxim. and Quercus) by visually interpreting the divided image, and then labeling was performed manually. The dataset constructed a total of 2,429 images, of which about 85% was used as learning data and about 15% as verification data. As a result of classification using the deep learning model, the overall accuracy of up to 78% was achieved when using the Worldview-3 image, the accuracy of up to 84% when using the GeoEye-1 image, and the classification accuracy was high performance. In particular, Quercus showed high accuracy of more than 85% in F1 regardless of the input image size, but trees with similar spectral characteristics such as Pinus densiflora and Pinus koraiensis had many errors. Therefore, there may be limitations in extracting feature amount only with spectral information of satellite images, and classification accuracy may be improved by using images containing various pattern information such as vegetation index and Gray-Level Co-occurrence Matrix (GLCM).

Product Image Concentration System as a Design Strategy to Build Corporate Brand Image (기업 브랜드 이미지 구축을 위한 디자인 전략으로서의 제품 이미지 집중 체계)

  • Kim, Hyun
    • Archives of design research
    • /
    • v.16 no.2
    • /
    • pp.375-384
    • /
    • 2003
  • This study is on the strategy for establishing successful corporate brand image, by understanding the need for increasing brand value based on the level of brand recognition. In order to carry this out, the PICS (Product Image Concentration System) is suggested, which includes Brand Image Analysis on a high-level, Product Image Programming based on the result of the image analysis, and Product Image Coherency Assessment and Management, resulting in setting up a guideline for gaining competitive advantage and brand management. Brand Image Analysis is a method that utilizes image association to understand brand disposition by analyzing the association pattern among available visual materials to measure the corporate and brand image inclinations. As the next step, Product Image Programming establishes design philosophy and principles based on the analysis of brand image, and the Visual Programming is a process for visualizing the intended product image direction. Lastly, Product Image Coherency Assessment examines whether to incorporate design philosophy and principles or not to arrive at an agreed evaluation criteria for developing designs coherent with the brand image. The PICS (Product Image Concentration System) is a practical method for increasing a company' competitive advantage and managing brand. The expectation on this system is to provide a guideline for applying brand image in design process more objectively. For further study, diversification of image spectrum based on expressive keywords and comparative analysis on images as well as a product image interpretation program to understand the order of visual materials will be necessary.

  • PDF