• Title/Summary/Keyword: 승온특성

Search Result 205, Processing Time 0.023 seconds

Spontaneous Combustion of Various Fuels of Carbonization Rank (탄화도별 발전연료의 자연발화 특성 평가)

  • Kim, Jae-Kwan;Park, Seok-Un;Jeong, Jae-Hyeok;Shin, Dong-Ik;Hong, Jun-Seok;Hong, Jin Pyo
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.78-89
    • /
    • 2017
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heated in an oven with air to analyze an self oxidation starting temperature. This tests produce a CPT(Cross Point Temperature), IT(Ignition temperature) and CPS(Cross Point Slope) by calculated as the slope of time taken a rapid exothermic oxidation reaction at CPT base. CPS show a carbonization rank dependence, whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A subbituminous KIDECO coal shows an CPS values of $15.370^{\circ}C/min$ whereas it of pet coke of the highest carbonization rank has $20.950^{\circ}C/min$. The nature of this trend is most likely a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation as well as surface area of fuel char, and constant pressure molar heat.

Combustion Characteristics of Domestic Anthracite with High-Pressure TGA (가압열중량분석기를 이용한 국내무연탄의 연소특성 해석)

  • 류호정;한근희;진경태;이계봉;최정후
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.243-252
    • /
    • 2001
  • Combustion characteristics of domestic anthracite coal were observed by high-pressure thermogravimetric analyzer with variation of pressure (1~16 atm) and heating rate (15, 20, $25^{\circ}C$/min) with non-iso-thermal method (temperature range : 25~100$0^{\circ}C$). Measured combustion reaction rate increased with increasing pressure. This result could be explained by the fact that the activation energy of coal combustion decreased with increasing pressure. Reaction order of coal combustion determined by Freeman and Carroll$^{[11]}$ method linearly increased from 1.04 to 1.30 and activation energy decreased from 47.37 to 14.42 Kcal/mol as pressure increased from 1 to 16 attn.

  • PDF

A Study on the Strength Characteristics of Model Ice for Warm-up Time during Model Ice Preparation (모형빙 생성 시 승온 시간에 따른 모형빙의 강도 특성 연구)

  • Jeong, Seong-Yeob;Ha, Jung-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • Understanding the strength characteristics of model ice is an important issue for model testing in an ice model basin to estimate the ship performance in ice. In particular, the mechanical properties of the model ice including elastic modulus, flexural strength and compressive strength are key consideration factors. In order to understand the characteristics of the model ice during warm-up phase at KRISO's ice model basin, the strength properties are tested in this study. The infinite plate-bending method, in-situ cantilever beam test and ex-situ uniaxial compressive test are conducted to determine the strength properties of model ice. The strength characteristics of the model ice are then analyzed in terms of the warm-up phase and seasonality. These results could be valuable to quality control of the model ice characteristics in KRISO's ice model basin and to better understand the variations in strength properties during the ice model tests.

Effect of Stabilization Conditions on the Microstructure and Electrochemical Properties of Melt-blown Graphite Fibers Prepared from NMP (NMP로부터 제조된 Melt-blown흑연섬유의 안정화조건에 따른 미세구조와 전기화학적 특성)

  • Kim Chan;Yang Kap Seung;Ko Jang Myoun;Park Sang Hee;Park Ho Chul;Kim Young-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.104-108
    • /
    • 2001
  • Naphthalene derived mesophase pitch WP) was spun into short fibers by using melt-blown technology. The pitch fibers oxidative stabilization were carried out heating rates of $2^{\circ}C/min,\;5^{\circ}C/min\;and\; 10^{\circ}/min$. The heating rate was a key factor to maximate the capacity of the Li-ion secondary battery through controlling the morphology of the graphitized fiber. The diameters of the melt-blown fibers prepared were in the range of $4{\mu}m\~16{\mu}m$ with functions of air jet speed, air temperature and the temperature of the nozzle. The graphitized fibers of $10{\mu}m$ diameters showed various morphological structure with heating rate of the stabilization. Radial, radial-random and skin-core cross-sectional structure of the fibers were observed at the respective heating rate of $2^{\circ}C/min\;5^{\circ}C/min\;and\;10^{\circ}C/min$. Most crystalline structure of graphite was obtained from the fiber stabilized at heating rate of $10^{\circ}C/min$ exhibiting the best anode performance with 400 mAh/g of capacitance and $96.8\%$ of charge/discharge efficiency.

Fire-Retardation Properties of Silicone/Perlite Composites (실리콘/펄라이트 복합체의 난연 특성)

  • Lee, Byunggab;Won, Jongpil;Jang, Ilyoung;Bang, Daesuk
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.154-154
    • /
    • 2011
  • 최근 세계 각지에서 발생하는 대규모 터널 화재사고는 많은 사상자를 동반하고 이에 따른 경제적, 사회적 손실 또한 방대하게 진행되는 실정이다. 터널 구조물의 화재 특성상 외부에 쉽게 노출되지 않기 때문에 화재 발생 시 화재에 노출된 표층이 박리되거나 비산해서 단면결손이 생기는 폭렬 현상(explosive spalling)이 발생하게 된다. 이러한 폭렬 현상은 붕괴와 같은 대형 참사로 이어질 가능성이 크다. 따라서 본 연구에서는 터널 내 화재 발생 시 콘크리트 구조물의 폭렬에 의한 붕괴를 예방하기 위하여 이액형 상온경화 실리콘 고무와 인체에 무해한 친환경 첨가제인 펄라이트를 일정한 혼합비(5wt%, 10wt%, 15wt%, 20wt%)로 혼합하여 고성능 난연 복합체를 제조하고, 열적 특성과 난연 특성을 연구를 진행하였다. 열적 특성에 관한 시험으로 TGA를 측정하였으며, 난연 특성에 관한 시험으로는 화염 시험, 내화로 시험, 탄화로 시험을 진행하였다. 우선 TGA 시험은 $20^{\circ}C/min$ 승온 속도로 $800^{\circ}C$까지 실험을 하였고, 화염 시험은 제작한 시편과 gas torch($1200^{\circ}C$)의 화염 거리를 약 10cm로 하여 약 1시간 동안 시험을 하였다. 내화로 시험은 내화로 장치를 이용하여 RABT curve(5분만에 $1200^{\circ}C$도달 후 한 시간 동안 유지 후 냉각, 총 시험 시간 180분) 조건을 만족하는 환경에서 제작한 시편을 콘크리트에 부착하여 콘크리트의 내부온도를 측정하였다. 탄화로 시험은 탄화로 장치를 이용하여 $2^{\circ}C/min$ 승온속도로 $900^{\circ}C$까지 실험을 하여 외부 형태 변화를 관찰하였다. 각각의 시험 결과 TGA 열분해 결과 순수한 실리콘 고무보다 난연제인 펄라이트를 첨가했을 때 더 높은 온도에서 초기 분해 거동을 보였으며, 최종 잔류량은 80%를 보였고, 5 wt%의 펄라이트가 혼합된 시편의 최종 잔류량이 높은 것으로 보아 열분해에 가장 강한 조성임을 알 수 있었다. 화염 시험 결과 펄라이트가 혼합된 모든 시편에서 $300^{\circ}C$가 넘지 않은 결과를 보였다. 이는 제조된 복합체가 화염에 직접적으로 장시간 노출이 되어도 안전하다는 것을 알 수 있다. 내화로 및 탄화로 시험 결과 펄라이트가 15wt%와 20wt%가 첨가된 시편들보다 5wt%와 10wt% 첨가된 시편들이 고온에서 안정하다는 것을 보였다.

  • PDF

Risk evaluation of EVA dust with oxidizer by a pressure vessel (압력용기시험에 의한 EVA분진의 혼촉 위험성 평가)

  • 이창우;김정환;현성호
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.7-12
    • /
    • 1999
  • Thermal properties of EVA dust and its risks of coexisting with oxidizer were investigated by a pressure vessel. The decomposition of EVA dust with temperature using DSC and the weight loss with temperature using TGA were also investigated to find the thermal hazard of EVA dust. Using the pressure vessel which can estimate ignition and explosion of EVA dust coexisting with oxidizer by bursting of a rupture disc, many experiments have been conducted by varying the orifice diameter, heating rate, the weight ratio of the sample coexisting with oxidizer, and the species of oxidizer. According to the results of the thermal analysis of EVA dust, a little change of the decomposition initiation temperature with the heating rate could be found and the decomposition temperature zone of EVA dust was 250 to 50$0^{\circ}C$. The risk of EVA dust coexisting with oxidizer was increased as the orifice diameter was decreased. On the other hand, it was increased as the heating rate and the weight ratio of the sample coexisting with oxidizer were increased. In addition, the risk of EVA dust coexisting with oxidizer was affected by the decomposition temperature of the sample and oxidizer, respectively, at slow heating rate, but it was affected by the oxygen weight percent of oxidizer at fast heating rate.

  • PDF

Metal-Support Interaction in Cu /${\gamma}$-$Al_2O_3 and Cu / TiO_2$ Systems (구리를 포함하는 ${\gamma}$-$Al_2O_3$$TiO_2$에서의 금속-담체 상호작용)

  • Mi-Kyeong Ju;Chong-Soo Han;Min-Soo Cho;Kae-Soo Rhee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.543-548
    • /
    • 1988
  • The metal-support interaction was studied in 1∼5wt% copper supported on $\gamma-alumina$ and titania systems by temperature programmed reduction (TPR) and EPR. When the samples were treated with oxygen at $500^{\circ}C$, the relative area of H2-TPR peak at higher temperature increased with copper content for titania system whereas that of lower temperature increased for ${\gamma}$-alumina system. After oxygen treatment at $500^{\circ}C,\;{\gamma}$-alumina system showed a TPR peak at $300^{\circ}C$ while two peaks at 120 and $180^{\circ}C$ were found in titania system. A typical $Cu^{2+}$ EPR signal was observed on ${\gamma}$-alumina but very broad and small one on titania. From the results, it was suggested that the metal-support interaction increases in the order of silica < titania < ${\gamma}$-alumina and copper oxide has different loading characteristics depending on the supports.

  • PDF

Pyrolysis Hazard for Nano and Micro-sized Aluminium Dusts (알루미늄 나노 및 마이크로 입자의 열분해 위험성)

  • Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.75-80
    • /
    • 2015
  • Aluminum dusts, from micro to nano-scale, are widely used in various applications such as propulsion and pyrotechnic compounds because of high burning rate. In this study, the pyrolysis hazard of aluminum dusts with different median size (sized by 70 nm, 100 nm, $6{\mu}m$, $15{\mu}m$) were investigated experimentally. The thermal decomposition characteristics of aluminum dusts with the variation of heating rate were investigated using TGA (Thermo gravimetric analysis) and was estimated the minimum ignition temperature from temperature of weight gain in nano and micro-sized aluminum dusts with different diameter. In the same condition of heating rate, the temperature of weight gain in aluminum dust layers increased with increasing of particle size and increased with increasing of heating rates in air. From the results, it was estimated that the pyrolysis hazard of aluminum dusts decrease with increasing of mean diameter.

Properties of artificial aggregates fabricated with various heating conditions (다양한 승온조건으로 제조된 인공골재의 특성)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.301-306
    • /
    • 2010
  • The artificial aggregates were fabricated by using the inorganic wastes, dredged soil produced at a dredging work. The input temperature ($800{\sim}1000^{\circ}C$), output temperature ($1100{\sim}1200^{\circ}C$) and heating rate ($5{\sim}10^{\circ}C$/min) in sintering process were controlled to fabricate the aggregates with various value of density and water absorption, and their properties were analyzed as a function of those factors. The specimens sintered at the lower input temperature showed the higher density and the lower water absorption while those with higher input temperature had many pores inside of the aggregates, lower density and higher water absorption. Also increasing the input temperature accelerated the black core phenomenon in the aggregates. The bloating phenomena which the gigantic pores were generated inside the aggregates were improved as increasing the output temperature, but its effect was lower than that of input temperature. It could be realized that the bloating tendency was improved from the results that the density was increased and water absorption was decreased with increasing heating rate from 5 to $10^{\circ}C$/min. It was found that the artificial aggregates of light or heavy weight with various value of density and water absorption could be fabricated by using dredged soils naturally involving gas and fluxing components by controlling the sintering conditions.

A study on the Temperature Profile with combustion conditions change for the Optimum drive of Plate type Hydrogen Generation Sytem (평판형 수소생산시스템의 최적 운전조건을 위한 연소조건별 분위기 온도 연구)

  • Heo, Su-Bin;Park, Jae-Min;Yoon, Bong-Seock;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.238-243
    • /
    • 2012
  • The purpose of this study is to search the temperature-rise time conditions for adequate reforming temperature region of hydrogen generation system. And we measured theexhaust gas at the exit of that system in order to know the combustion state of hydrogen generation system's combustor. We found the optimum condition of heat supply and temperature-rise time at well burned state. And the results were nearly same when the reactants were entered to each reactors. We will further consider the effects of temperature change near the exothermic reactors and find out hydrogen yield through reforming experiment.