• Title/Summary/Keyword: 습지 기능평가

Search Result 108, Processing Time 0.033 seconds

Evaluating the Effect of Low Impact Development on Yeongsan River Stream (영산강 수계 저영향개발(LID)의 수질효과 평가)

  • Kim, Seok-Gyu;Kang, Jea-Hong;Park, Se-Hwan;Ko, Kwang-Yong;Ha, Don-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.457-457
    • /
    • 2011
  • 저영향개발(LID, Low Impact Development)은 물순환체계 개선을 위해 녹색 공간의 확보, 자연형 공간 조성, 자연상태의 수문순환 기능의 유지 기법 등을 활용한 개발 대상지에서의 강우유출 및 비점오염원의 영향을 최소화할 수 있는 새로운 방법이다. LID는 강우 유출수의 지하침투, 강우 종료시 증발산량의 확보, 강우 유출수의 재이용 등을 통한 강우 유출량을 최소화하는 것에 그 목적이 있다. LID 방법은 우수저류 공원, 생태저류지, 지붕층 저류공원, 보도 저류공간, 인공습지, 완충녹지대, 수목 보존지대, 지붕층 배수관, 강우 저장조, 투수성 포장, 토양 개량, 불투수층 최소화, 비점오염원 저감 등으로 효율성, 경제성, 유연성, 합리성, 토지 가치증대 등의 장점이 있다. 영산강 수계의 BOD 배출부하량이 점오염원(21,019kg/일)과 비점오염원(50,047kg/일)의 비율이 3:7 로 비점오염원 배출부하량이 훨씬 큰 상태이다. 특히, 광주광역시, 농업용 토지, 축산계 등의 비점오염원이 영산강 수질에 크게 영향을 미치고 있다. 따라서 본 연구에서는 비점오염원의 영향이 큰 영산강 수계를 대상으로 앞으로 이루어지는 개발계획을 분석하여 LID 기법을 적용하였을 때 영산강 수질에 미치는 영향을 모델링을 통해 예측하고자 한다. 수질개선에 어느 정도의 효과가 있는지 검증하기 위해 국내 실정에 맞고 QUAL2E 모델을 근간으로 WASP5 모형의 장점들을 접목시켜 Bottle BOD의 반응기작 및 조류의 생산에 의한 유기물 증가, 탈질화 반응 등 정체수역에서 일어날 수 있는 반응기작을 모의할 수 있도록 보완한 QUALKO2 모형을 이용하여 그 효과를 모의하고자 한다. 본 연구를 통해 LID 기법이 도시화에 영향을 얼마나 덜 주는지, 수계의 비점오염원 효과를 통해 물순환 체계의 개선이 어느 정도로 어루어지는지에 대한 효과를 검증을 할 수 있는 계기가 될 수 있을 것으로 판단된다.

  • PDF

A study on the estimation of hydrologic function for ecological restoration at forested wetland (산지습지의 생태적 복원을 위한 수문학적 기능 평가에 관한 연구)

  • Jung, Yu-Gyeong;Kang, Won-Seok;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.97-111
    • /
    • 2022
  • This study was conducted as restoration work to improve the discharge in forested wetlands where there is a concern of damage and observed changes in the discharge and groundwater level. The monthly changes showed that during the wet season, the amount of discharge decreased after restoration and GWL increased. It showed that during the dry season, the GWL and discharge increased. The increased discharge after restoration seems to be the difference in the number of days with no rainfall duration. The change in discharge for each unit of rainfall showed a tendency to increase the baseflow and decrease the direct discharge after restoration. The recharge ratio of GWL showed a decreasing tendency as rainfall was higher. After restoration, it showed a higher tendency under rainfall with less than 20mm. It has been confirmed that the restoration implemented by the study caused such an effect as the increased baseflow and increased GWL. It would be an effective restoration method to maintain water resources in forested wetlands. In the initial rainfall, it demonstrated a certain level of effect, but it is necessary to develop a restoration technology that can decrease the amount of water discharged after the end of rainfall or during the period of no rainfall to protect and maintain the forested wetlands. Streamflow should be identified by each type of terrain of wetlands and a proper restoration countermeasure should be devised for the site where the discharge frequently occurs.

Riparian Connectivity Assessment Using Species Distribution Model of Fish Assembly (어류군집의 종분포모형을 이용한 수변지역 연결성 평가)

  • Jeong, Seung Gyu;Lee, Dong Kun;Ryu, Ji Eun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.17-26
    • /
    • 2015
  • River corridors facilitate dispersal and movement and prevent local extinction of species. As a result of stream restoration projects, which include installation of waterfront and flood control structures, the number of animals, which rely on river corridor, is decreasing. For the study, factors affecting fish assembly were extracted by a species distribution model with the fish data collected from the Seom River in Hoengseong County and City of Wonju, Ganwon Province, Korea between March to October 2013. The riparian connectivity was assessed using species richness and rarity. According to result of the field survey, there were 38 species and 7,061 individuals for fish. The analysis suggests the following. Firstly, factors affecting fish richness in species distribution model results are shown to be velocity, riffle, riparian width, and water width. The accuracy of the model proves to be suitable with the correlation coefficient of 0.83 and MAPE of 19.2%. Secondly, the low rarity area is shown to be straight streams in Jeon river near to Hongseong County and the high rarity area to be streams with large width, existing alluvial area at channel junction between Jeon river and Seom river. Thirdly, according to connectivity results, areas where weirs are installed or riparian buffer area is removed showed low connectivity. The areas where farmland near riparian and forest areas showed high connectivity. The results of this study can be utilized to improve current facilities and enhance connectivity as a restoration guide.

Aesthetic Landscape Assessment Based on Landscape Units in the Han River Riparian Area (경관단위 기반 수변환경의 심미적 평가 - 한강 수변을 대상으로 -)

  • Bae, Min-Ki;Park, Chang-Sug;Oh, Chung-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.43-56
    • /
    • 2012
  • The purpose of this study was to propose management strategies through aesthetic landscape assessments for landscape units in the Han River riparian(HRR) area. First, this research reclassified the HRR into "natural," "artificial," "agricultural," and mixed landscape types and selected 37 representative case areas(about $1km{\times}1km$). This study found 71 landscape units in consideration of topography and land surface classification. Landscape assessment consisted of landscape quality and landscape integration assessment. The criteria for assessing landscape quality were "naturalness," "interest," "uniqueness," and "landscape function." "Landscape quality" was ranked into five grades using a matrix. The landscape integration assessment consisted of an inner integration assessment in each landscape unit and outer integration assessment among landscape units. As a result of the field study, case sites were found to have 4,288 landscape units and an area of $42.8km^2$. The forest area was found to have the most space with $11,580,905m^2$(27.1%), while the wet lands had just $52,348m^2$(0.1%). In the landscape quality assessment, about 30.5% of the total area consisted of landscape units that scored highest in "naturalness". In the landscape integration assessment, about 39.3% of the total area consisted of landscape units which scored highest in "integration", denoting visual interrelation and harmony. The existence of disparities in landscape quality in accordance with the form of the landscaping was determined using a Oneway ANOVA, with "naturalistic" landscaping scoring the highest and "artificial" landscaping scoring lowest. This study may contribute to making the HRR area a more ecologically sound and visually attractive landscape space. It is recommended that the aesthetical and ecological value of the landscape unit should be assessed simultaneously in the future.

An Assessment on Vegetation and Fish Diversity in Natural Urban Stream (자연형 도시하천의 식생 및 어류 다양성과 특성 평가)

  • Kim, hong bae;Ahn, kyung soo
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.53-64
    • /
    • 2006
  • A study on the restoration process of a stream ecosystem and the water quality renovation technique by removing algae, vegetation and fish monitoring as evaluating the removal of the algae by dietetic characteristics of fishes were performed on Sangdong stream in the B city after stream restoration it to the artificial stream as the cases, restoring urban stream into close-to-nature stream are being increased domestically with the aim of ecological city. As a result, restoration and rehabilitation of the fundamental stream ecosystem was well maintained 4 years later the reclamation at the moment and total 93 diagnosis which were all vascular plant phylum including 44 families, 73 genuses, 79 species and 14 varieties in flora and vegetation community were observed. 3 families, 8 species and 354 populations in total among Fishes were found and Pseudorasbora Parva, Cyprinus Carpic and Carassius Auratus strongly resistant to water pollution were dominantly appeared in order of 50.5% of Pseudorasbora Parva 21.2% of Cyprinus Carpic, 20.9% of Carassius Auratus, 7.1% of Macropodus chinensis and 0.3% of Misqurnus anguillicaudatus according to relative richness index. It turned out to be that Cyprinus Carpic ingests algae over 90% and Carassius Auratus takes it over 30% according to the analysis about the alimentary object of the fishes as a consequences of algae's excrescent from characteristics of the tested experimental stream. It is reported that a Cyprinus Carpic, about 34 cm in length, ingested wet-weight 43.2g algae on the rough analysis toward the sample which makes us recognize how effective a macro community Cyprinus Carpic is for removing algae.As a consequence of this research, the effect of stream ecosystem characteristics and water quality purification could not be expected by aquatic plants and trees which were eliminated at experimental stream. From now on, a close-to-nature stream should be formed of ecological hydraulic and hydrologic engineered modeling from the beginning so that it can perform the water quality purifying function. It is determined that the structure of food chain will be abundantly influenced by the induction of oversized macro community like Cyprinus Carpic because a biomass of a consumer of higher order is increased. It is estimated that the removal algae by fishes is not effective despite in some cases of dietetic characteristics so much more studies should be executed in the future.

  • PDF

Investigation on the water quality challenges and benefits of buffer zone application to Yongdam reservoir, Republic of Korea (용담호의 홍수터 적용을 위한 문제점 및 이점 조사 연구)

  • Franz Kevin Geronimo;Hyeseon Choi;Minsu Jeon;Lee-Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.274-283
    • /
    • 2023
  • Buffer zones, an example of nature-based solutions, offer wide range of environmental, social and economic benefits due to their multifunctionality when applied to watershed areas promoting blue-green connectivity. This study evaluated the effects of buffer zone application to the water quality of Yongdam reservoir tributaries. Particularly, the challenges and improvement of the buffer zone design were identified and suggested, respectively. Water and soil samples were collected from a total of six sites in Yongdam reservoir from September 2021 to April 2022. Water quality analyses revealed that among the sites monitored, downstream of Sangjeonmyeon Galhyeonri (SG_W_D2) was found to have the highest concentration for water quality parameters turbidity, total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN). This finding was attributed to the algal bloom observed during the sampling conducted in September and October 2021. It was found through the soil analyses that high TN and TP concentrations were also observed in all the agricultural land uses implying that nutrient accumulation in agricultural areas are high. Highest TN concentration was found in the agricultural area of Jeongcheonmyeon Wolpyeongri (JW_S_A) followed by Jucheonmyeon Sinyangri (JS_S_A) while the lowest TN concentration was found in the original soil of Sangjeonmyeon Galhyeonri (SG_S_O). Among the types of buffer zones identified in this study, Type II-A, Type II-B and Type III were found to have blue-green connectivity. However, initially, blue-green connectivity in these buffer zone types were not considered leading to poor design and poor performance. As such, improvement in the design considering blue-green network and renovation must be considered to optimize the performance of these buffer zones. The findings in this study is useful for designing buffer zones in the future.

Study of Biomass Estimation Methods for the Freshwater Cladoceran Species, Simocephalus serrulatus (Koch, 1841) (담수산 지각류 Simocephalus serrulatus (Koch, 1841) 생체량 산정 방법 연구)

  • Hye-Ji Oh;Geun-Hyeok Hong;Yerim Choi;Kwang-Hyeon Chang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.2
    • /
    • pp.161-171
    • /
    • 2023
  • The medium-large cladoceran species Simocephalus spp. predominantly occur in habitats with developed aquatic vegetation. Accordingly, due to Simocephalus' high contribution to zooplankton community biomass in the lake's littoral zone and wetland habitats, estimating their biomass is important to understand the matter cycling based on biological interactions within the aquatic food web. In this study, we reviewed the length-weight regression equations used previously to estimate Simocephalus biomass, directly measured S. serrulatus' body specification (length, width and area) and their biomass(dry weight) using instruments such as a microscopic digital camera and a microscale, and performed regression analysis between each other. When S. serrulatus biomass was estimated using the equation (Kawabata and Urabe, 1998) presented in 『Biomonitoring Survey and Assessment Manual』, Korea, errors between estimates and measures were relatively large compared to the S. serrulatus species-specific biomass estimate equation developed by Lemke and Benke (2003). In addition, both equations showed not only increasing trends in error (estimate-measure) with increasing S. serrulatus' body length, but also in error variance among similar-sized individuals. The results of regression analysis with dry weight by body specifications indicated that the most appropriate equation for estimating the biomass of S. serrulatus was derived from the width-dry weight exponential regression equation (R2=0.9555). The review and development study of such species-specific biomass estimation equations for zooplankton can be used as a tool to understand their role and function in aquatic ecosystem food webs.

Development of A Material Flow Model for Predicting Nano-TiO2 Particles Removal Efficiency in a WWTP (하수처리장 내 나노 TiO2 입자 제거효율 예측을 위한 물질흐름모델 개발)

  • Ban, Min Jeong;Lee, Dong Hoon;Shin, Sangwook;Lee, Byung-Tae;Hwang, Yu Sik;Kim, Keugtae;Kang, Joo-Hyon
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • A wastewater treatment plant (WWTP) is a major gateway for the engineered nano-particles (ENPs) entering the water bodies. However existing studies have reported that many WWTPs exceed the No Observed Effective Concentration (NOEC) for ENPs in the effluent and thus they need to be designed or operated to more effectively control ENPs. Understanding and predicting ENPs behaviors in the unit and \the whole process of a WWTP should be the key first step to develop strategies for controlling ENPs using a WWTP. This study aims to provide a modeling tool for predicting behaviors and removal efficiencies of ENPs in a WWTP associated with process characteristics and major operating conditions. In the developed model, four unit processes for water treatment (primary clarifier, bioreactor, secondary clarifier, and tertiary treatment unit) were considered. Additionally the model simulates the sludge treatment system as a single process that integrates multiple unit processes including thickeners, digesters, and dewatering units. The simulated ENP was nano-sized TiO2, (nano-TiO2) assuming that its behavior in a WWTP is dominated by the attachment with suspendid solids (SS), while dissolution and transformation are insignificant. The attachment mechanism of nano-TiO2 to SS was incorporated into the model equations using the apparent solid-liquid partition coefficient (Kd) under the equilibrium assumption between solid and liquid phase, and a steady state condition of nano-TiO2 was assumed. Furthermore, an MS Excel-based user interface was developed to provide user-friendly environment for the nano-TiO2 removal efficiency calculations. Using the developed model, a preliminary simulation was conducted to examine how the solid retention time (SRT), a major operating variable affects the removal efficiency of nano-TiO2 particles in a WWTP.