• Title/Summary/Keyword: 습지퇴적물

Search Result 136, Processing Time 0.022 seconds

The Characteristics of Sediment and Organic Content in the Dalpo Wetland (달포늪의 퇴적물과 유기물함량 특성 연구)

  • Kang, Dong Hwan;Kim, Sung Soo;Jung, Hwee Je;Kwon, Byung Hyuk;Kim, Il Kyu
    • Journal of Wetlands Research
    • /
    • v.9 no.3
    • /
    • pp.1-12
    • /
    • 2007
  • In this study, the correlation of organic content with particle size and type of sediment was found out.Particle size, stratigraphic section and organic content of sediments sampled from Dalpo wetland was analyzed. Dalpo wetland consists of three wetlands, and the area of Dalpo wetland is about $31,295m^2$. The particle size analyses for sampled sediments of 7 points (3 points in wetland A, 3 points in wetland B and 1 point in wetland C) were tested. As results of the particle size analyses, the sediment particle size becomes larger as to the edge of the wetland. It is revealed in order of wetland A > wetland C > wetland B. Borehole surveys with horizontal distance in the major and minor axes of wetland A, the major and minor axes of wetland B and the major axis of wetland C were accomplished. Clayey peat deposit is distributed at 10~90 cm depth below ground surface in the major axis of wetland A. The clayey peat deposit was the most thick at the center of wetland A that horizontal distance is 100 m. As the depth below ground surface of clayey peat deposit is less than 27 cm in the wetland B, we can infer that the life for the wetland B is being finished. Sediment composition of wetland C is simple because wetland C is small scale, and clayey peat deposit is distributed at 10~34 cm depth below ground surface. Sediment sampled by borehole survey in the Dalpo wetland was cut at interval of 10 cm, then organic content was analyzed. Organic content of wetland A sediment showed more than 40% until 70 cm depth below ground surface, also sediment of wetland B is similar to wetland A until 10 cm depth below ground surface, but is showed within 20 % above 30 cm depth below ground surface. Organic content of wetland B is showed the lowest as organic content near the ground surface is about 40%. All of the three wetlands, organic content is showed higher at clayey peat deposit near to ground surface. This is caused by finer particles of the clayey peat deposit, also organic materials were supplied from dead vegetation. Organic content of the Dalpo wetland showed in order of wetland A > wetland C > wetland B. This result is caused by thickness of clayey peat deposit in sediment. Through this study, it was verified that organic content of the Dalpo wetland sediment was dominated by particle size of sediment and vegetation of the upper part.

  • PDF

Implication of the Ratio of Exchangeable Cations in Mountain Wetlands (산지습지 치환성 양이온 함량비의 특성과 함의)

  • Shin, Young Ho;Kim, Sung Hwan;Rhew, Hosahang
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.2
    • /
    • pp.221-244
    • /
    • 2014
  • We suggested several implications by examining geochemical properties of sediments in Simjeok, Jangdo, and Hwaeomneup mountain wetlands which are natural preservation areas. Geochemical properties of wetland sediments show that all wetlands were included in the type of fens, but their distribution patterns were different from one another. We classified three sub-groups of sediments using the two step cluster analysis on the ratio of exchangeable cations. Wetland sediments can be grouped into Ca-dominated, Mg-dominated, and K-dominated types. Simjeok wetland have Ca-dominated sediments, while the sediments of Jangdo wetland indicate the Mg-dominated and Ca-dominated characteristics. Hwaeomneup wetland is composed of K-dominated sediment mainly. Different properties in the ratio are affected by various environmental factors such as geological, pedological, and vegetational settings. Because these geochemical properties will be affected by climate change and human impacts, these will be environmental indicator in mountain wetlands and be used in wetland management. This scheme can be used for classification of mountain wetlands. Therefore, we should work on geochemical properties of wetland sediments and classification schemes based on geochemical properties not only to widen understanding in geomorphic system or ecosystem of mountain wetlands but to conserve mountain wetlands properly.

  • PDF

Geomorphological and Sedimentological Characteristics of Jangdo Wetland in Shinan-gun, Korea (신안 장도습지의 지형과 퇴적물 특성)

  • CHOI, Kwang Hee;CHOI, Tae-Bong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.2
    • /
    • pp.63-76
    • /
    • 2010
  • The Jangdo wetland is located on a very gentle slope of the mountain area in Daejangdo island, Shinan-gun, Korea, in which the area of the watershed is estimated at 147,000 m2. The wetland has been regarded as a peat bog without any sedimentological evidence. This study was conducted to analyze the geomorphological and sedimentological characteristics of the wetland. The geographic information system (GIS) was used to analyze the drainage system, and field surveys were conducted to measure the range and depth of wetland deposits. The grain size analysis, organic matter determination, elements analysis and radiocarbon dating were performed on samples from the wetland. As a result, the wetland deposits were about 30 cm deep on average, the mean grain sizes ranged from 50 to 500 μm, and the average C/N ratio was 11.5. The portion of organic matter it contained was only 5~26%, which did not satisfy the peat standards. The radiocarbon ages from the wetland deposits range 180±50 14C yr BP to modern, which indicated that natural and anthropogenic interferences including agricultural activities have continuously happened. We conclude that the Jangdo wetland is still in its infancy, not a steady state, so that it could be very sensitive to a small disturbance.

Sediment Material Contents and Settling Velocity of Particle Material in the Constructed Wetland in Sookcheon in the Cachment of Daecheong Reservoir (대청호 유역 소옥천 인공습지에서 부유물질 침강속도 및 퇴적물의 물질함량)

  • Je-Chul Park;Dong-Sup Kim;Kwang-Soon Choi
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.3
    • /
    • pp.244-250
    • /
    • 2022
  • The changes in COD, TOC, T-P, and T-N concentrations were investigated for 2 years in the constructed wetland of Sookcheon, which was installed to improve the water quality of Daecheong reservoir in South Korea. In order to evaluate the pollution level of sediments in the wetland, settling velocity of particulate material (4 times) and sedimet material contents (6 times) were measured. COD and TOC concentrations increased slightly as they passed through wetlands, and T-N and T-P concentration tended to decrease. The material content (COD, T-P, T-N) of aquatic plants was higher in floating-leaved and free-floating macrophytes than emergent macrophytes. As a result of measuring the sedimentation rate of suspended materials, most of the suspended materials introduced into constructed wetlands were sedimented at a rapid rate in the first sedimentation site. In addition, sediment pollution of T-P and T-N in constructed wetland was in severe pollution. The sediments containing a large amount of T-P and T-N were eluted by physical and chemical environmental changes, which is likely to act as internal pollution sources in wetlands.

Sediments and Design Considerations in the Forebay of Stormwater Wetland (강우유출수 처리목적 인공습지 침강지의 퇴적물 특성 및 설계 적정성에 관한연구)

  • Park, Kisoo;Cheng, Jing;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.223-235
    • /
    • 2012
  • In this paper, field study results about accumulation of sediments and its property in the forebay of wetland aiming at stormwater from rural area wherein intensive cow feeding lots are operated are provided. In addition, some design aspects are discussed. Amount of sediment generation in the longitudinal direction of forebay was found to be affected by hydrological factors such as rainfall depth and intensity. Nutrient contents in the sediments of this wetland were 10 times higher than those in stormwater wetland in rural area without animal-feeding lot. Total-Pb and As contents show similar level to values from the soils of surrounding watershed, but Total-Cu content was higher due to the animal feeding lots. Yearly amount of sediment generation, its depth and volume were estimated to 13tons, 23cm, and $65m^3$. Based on these results and recommended guideline by Korean Ministry of Environment, dredging frequency was found to be about 2.7years. The shape of forebay has to be carefully designed to deal with a great change in flow rate. According to the results of sediment depth analysis, instead of the present rectangular, wedge-shape forebay is more desirable in handling scouring caused by high flows.

Model Development on the Fate and Transport of Chemical Species in Marsh Wetland Sediments Considering the Effects of Plants and Tides (식생과 조석의 영향을 고려한 연안습지 퇴적물 내 물질거동 모형의 개발)

  • Park, Do-Hyun;Wang, Soo-Kyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.53-64
    • /
    • 2009
  • Wetlands can remove organic contaminants, metals and radionuclides from wastewater through various biogeochemical mechanisms. In this study, a mathematical model was developed for simulating the fate and transport of chemical species in marsh wetland sediments. The proposed model is a one-dimensional vertical saturated model which is incorporated advection, hydrodynamic dispersion, biodegradation, oxidative/reductive chemical reactions and the effects from external environments such as the growth of plants and the fluctuation of water level due to periodic tides. The tidal effects causes periodic changes of porewater flow in the sediments and the evapotranspiration and oxygen supply by plant roots affect the porewater flow and redox condition on in the rhizosphere along with seasonal variation. A series of numerical experiments under hypothetical conditions were performed for simulating the temporal and spatial distribution of chemical species of interests using the proposed model. The fate and transport of a trace metal pollutant, chromium, in marsh sediments were also simulated. Results of numerical simulations show that plant roots and tides significantly affect the chemical profiles of different electron acceptors, their reduced species and trace metals in marsh sediments.

Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments (퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.436-447
    • /
    • 2004
  • Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.

Considerations for the Preservation of World Wetlands (습지보전에 관한 고찰)

  • Lee, Chan-Won;Yoon, Sung-Yoon
    • Journal of Wetlands Research
    • /
    • v.1 no.1
    • /
    • pp.71-75
    • /
    • 1999
  • 세계각국 습지의 크기와 자연환경은 서로 다르지만 습지는 강과 관련이 되어있고, 여러 환경문제와 관련이 되어있다. 댐과 운하의 건설은 건기와 우기에 자연적인 홍수조절에 영향을 미치게 된다. 늪과 수질과 자연생태계는 정화되지 못한 가정하수와 강우 등에 영향을 받는다. 늪 주변의 산림벌채 및 습지저층 수로주위의 광범위한 퇴적지대가 형성된다. 습지유역의 경작으로 인하여 비료, 퇴비 등의 사용으로 습지의 부영양화를 가중시키게 된다. 습지의 부영양화와 오염된 퇴적물에 의한 수질악화는 전세계적인 문제로 대두되고 있다. 습지의 근본적인 문제는 무분별한 탐조활동, 환경오염으로 인한 동 식물의 감소 등으로 인한 생태계의 파괴이다. 그러므로, 가장 좋은 습지의 보전방법은 자연그대로 지속시키는 것이다.

  • PDF

Sedimentary Environments in the Hwangdo Tidal Flat, Cheonsu Bay (천수만 황도 갯벌의 퇴적환경)

  • Woo, Han Jun;Choi, Jae Ung;Ryu, Joo-Hyung;Choi, Song-Hwa;Kim, Seong-Ryul
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.53-67
    • /
    • 2005
  • Cheonsu bay, which is typically a semi-closed type, is characterized by various environments such as channels, sand bars, small islands and tidal flats. The construction of Seosan A and B sea dikes from 1983 to 1985 might continuously change sedimentary environments in the northern part of the bay. In order to investigate sedimentary environment, surface and core sediments were sampled at the Hwangdo tidal flat and adjacent sea in June and October 2003. The surface sediments consisted of five sedimentary facies. Generally, the surface sediments in October were changed coarser on the tidal flat and little changed in the subtidal area compared to those in June 2003. Sedimentary facies analysis of three core sediments suggested that wave and tidal current were relatively strong in the tidal flat near Hwangdo, whereas the energy was relatively low in the tidal flat near channel. Sediment accumulation rates in the Hwangdo tidal flat during 11 months indicated that sediments deposited in the central part, whereas eroded in eastern and western sides of the tidal flat. These caused that sea dike changed tidal current patterns and sediment supplies.

  • PDF