• Title/Summary/Keyword: 습윤-건조

Search Result 310, Processing Time 0.031 seconds

Effects of Temperature, Light and Plant Growth Regulators on the Seed Germination of Lavandula angustifolia Mill (잉글리쉬 라벤다의 종자발아(種子發芽)에 대한 온도(溫度), 광(光) 및 생육조절물질(生長調節物質)의 영향(影響))

  • Li, Xian Ri;Kang, Won-He;Yu, Chang-Yeon;Kim, Ii-Seop
    • Korean Journal of Medicinal Crop Science
    • /
    • v.6 no.4
    • /
    • pp.258-264
    • /
    • 1998
  • This study was conducted to establish mass propagation system from seeds of Lavandula angustiolia Mill. Only 4% of dry seeds were germinated when they were incubated in $4^{\circ}C$. Germination rate of stratified seeds for 9 weeks was 15% higher in light than darkness. Soaking with 1000mg/l of $GA_3$ was helpful to overcome the effect of darkness. The optimal temperature for germination was $25^{\circ}C$ for the seeds that were treated with$GA_3$, solution. For the improvement of germination rates, pretreatment of $GA_3$ at 500-2000mg/l showed about 75% of germination, and in the combination treatment of $GA_3$, and BA, germination rate increased by about 10% in the treatment of 1000mg/l $GA_3+10mg/l$ BA compared with the 1000mg/l $GA_3$ treatment. Cold stratification treatment was very effective for seed germination, and over 70% of seeds were germinated when they were incubated in $4^{\circ}C$ for 9-12 weeks. In addition, there was synergic effect on the seed germination subject to stratification and 1000mg/l $GA_3$, treatment for 6 months. In the mixture of vermiculite: peatmoss (1 : 1, v/v), emergence rate was 6.7% in control and 65% in 1000mg/l $GA_3$ treatment, respectively.

  • PDF

The Change of Riverside Vegetation by Construction of Ecological Stream in Suwoncheon, Gyeonggi Province (경기도 수원천 생태하천 복원사업 이후 식생변화 연구)

  • Choe, Il-Hong;Han, Bong-Ho;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • This study aims to analyze the change in vegetation for 10 years after the construction, targeting Suwoncheon, the first domestic ecological stream construction project. As for the section for the study, the section from Gyeonggi bridge to Youngyeon bridge, the first restoration project section, was targeted. The research districts consisted of 3 districts depending on topographical structure. Investigation check cosisted of cross-sectional topographical structure, vegetation status and the structure of herbaceous plant community. As for the cross-sectional topographical structure of the stream, the width of entire stream was 26.5~28.0m and water channel is 10~20m. The area for hydrophilic space was securing spacious riverside. Upper stream of reservoir beam was shallow and slow in reservoir area above weir. Lower stream of reservoir beam, the width of water channel was narrow and ripples were formed. Among species, 9 plants were planted and 6 species plants including Salix gracilistyla, Phragmites communis and Zoysia japonica were planted at the time of construction. In the water side, there were 2 species, such as Zoysia japonica and Trifolium repens, etc, still remained after seeding at the time of constrcution. The planted plants which were observed through this investigation, were 2 species such as Festuca arundinacea and Dactylis glomerata. Apart from the planted plants, arid climate herbaceous plant such as Setaria viridis and Artemisia princeps var. orientalis formed power and the naturalized species variously emerged in 15 species. For revetment, natural stone stacking method was condicted and Salix gracilistyla, Aceriphyllum rossii, etc were planted. But all the planted plants disappeared and now it was covered with Equisetum arvense and Humulus japonicus. It was because that the base for growth and development of the plants was not constructed at the time of restoration in a way of attaching natural stones onto the concrete base. In the water channel, various wetland species including Typha orientalis, Acorus calamus var. angustatus and Phragmites communis, etc, were planted but only Salix gracilistyla, Phragmites communis and Zizania latifolia remained. As for species of the autochthons, Persicaria thunbergii was dominant. In the lower stream of reservoir beam, Humulus japonicus formed forces. In the hydrophilic space, it was necessary to direct the landscape of in-stream vegetation in cosideration of users. For this, planting Miscanthus sacchariflorus in a community was proposed. In the upper stream of reservoir beam, suplementary screen seeding was necessary so that Zizania latifolia, Typha orientalis and Phragmites communis can fit the depth of water. In the Lower stream of reservoir beam, it was necessary to constantly manage Humulus japonicus so that the wetland autochthons species, such as Phragmites communis and Persicaria thunbergii can establish power more stably.

Changes of Vegetation Structure in Naejangsan District, Najangsan National Park for Twenty Years(1991~2010), Korea (내장산국립공원 내장산지구 20년간(1991~2010년) 식생구조 변화 연구)

  • Bae, Ji-Yoon;Kim, Ji-Suk;Lee, Kyong-Jae;Kim, Jong-Yup;Yeum, Jung-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.1
    • /
    • pp.99-112
    • /
    • 2013
  • This study aims to show the changes of characteristics of vegetation structure for 20 years(1991~2010) in Naejangsan National Park. As a result of analysis of actual vegetation, the mixed community of Quercus variabilis and Quercus serrata was distributed with 56.1%, and Q. variabilis community showed in southern steep slope with 17.6%. Pinus densiflora community(5.8%) was observed on the ridge and Carpinu tschonoskii community distributed in the slope of the valley with 6.6%. Zelkova serrata and Prunus sargentii community were distributed in valley. The classification by TWINSPAN, ordination by DCA considering importance percentage and property of vegetation class were divided into 4 communities, which are community I(P. densiflora-Q. variabilis community), community II(Q. variabilis community), community III(C. tschonoskii community) and community IV(Mixed deciduous broad-leaved trees community). The age of Pinus densiflora was 32years old and Q. serrata was 36 years old in the community I, that of Q. variabilis was 64 years old in the community II, Q. serrata was 46 years old and C. tschonoskii was 45 years old in the community III, and Acer palmatum was 54 years old and Cornus controversa was 47 years old in the community IV. As the result of Shannon's index of species diversity, the community Iwas ranged from 0.9751 to 1.4199, community II was ranged from 1.0765 to 1.3278, community III was ranged from 1.0353 to 1.2881, and community IV was ranged from 1.1412 to 1.3807. The change of vegetation structure analyzed through the comparison with results of studies carried out 20 years ago were natural selection of P. densiflora, expansion of Quercus spp. and increase of C. tschonoskii. Especially, A. palmatum is dominated by Q. variabilis in canopy layer like the result of study 20 years ago. A. palmatum was analysed by 14.6% in the canopy layer of only mixed deciduous broad-leaved trees community. As a result of analysis of habitat property of Q. variabilis and A. palmatum, Q. variabilis was distributed in dry area with the low value of pH, O.M., exchangeable cations and Avail. P, and A. palmatum was located in the wet valley with huge value of nourishment. The tendency of reduction of bio-diversity by Sasa borealis is same as previous study but, the distributed areas were reduced in Naejangsan area.

Deodorization of H2S, CH3SH in Soil Filter Reactors Packed with Montmorillonites, Rice Hulls and Thickening-activated Sludge (Montmorillonites, 왕겨 및 농축활성슬러지를 충진한 토양상에서의 H2S, CH3SH의 제거)

  • Kim, Hwan-Gi;Park, Chan-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.43-52
    • /
    • 2000
  • Deodorization characteristics and removal rate of sulfur-containing odor have been investigated in the soil filter reactors packed with montmorillonites (Mont.), rice hulls(Rh.), and thickening-activated sludge(Ts.). And variation of pH and $SO_4{^{2-}}$ with the removal of malodorous sulfur compounds have been investigated together. As compared removal rate of montmorillonites between wet and dry condition for sulfur compounds through batch test, it showed that wet condition was better than dry one; removal ratio, as wet/dry, was $H_2S$ of 1.2 and $CH_3SH$ of 1.9, and decrease of pH and increase of $SO_4{^{2-}}$ concentration in the wet condition also showed to be larger than in dry condition. In continuous test for biological deodorization experiment, removal rate of sulfur compounds in reactor packed with Mont., Rh. and Ts, was more than 98 %, and the variation of static pressure was maintained stably under condition of SV $150h^{-1}$, LV 4.2 mm/sec and SV $200h^{-1}$, LV 5.6 mm/sec, and in reactor packed with Mont. and Rh., $H_2S$ was 76.4 % to 87.2 % and $CH_3SH$ was 87.8 % to 93.3 % under the same condition. From above results, it ascertained that it can obtain the high deodorization efficiency by inoculating thickening-activated sludge in soil filter using montmorillonites.

  • PDF

The Late Quaternary Pollen Analysis of Gokgyo River Basin in Asan-City, Korea - Focused on Vegetation and Climate Environment between the Last Glacial Maximum and the Late Glacial - (충남 아산 곡교천 유역의 제4기 후기 화분분석 - 최종빙기 최성기~만빙기 식생 및 기후환경에 주목하여 -)

  • PARK, Ji-Hoon;KIM, Sung-Tae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • The pollen analysis was performed targeting the valley plain alluvium of Jangjae-ri, Asan area in order to clarify the climate and vegetation environment of the Last glacial maximum and the Late glacial in terms of Gokgyo River Watershed In Asan-City, Korea. The sample collection point gets included in the current deciduous broadleaf forest zone (south cool temperate zone). The results are as follows. (1) The vegetation environment of about 19,300-14,100yrB.P. at the investigation area is mainly classified into YJ-I period and YJ-II period while YJ-Ia period is classified once again into YJ-Ia period and YJ-Ib period. YJ-Ia period (19,300-17,500yrB.P.) is correlated with the Last Glacial Maximum while the vegetation at the time has relatively a little wide distribution area of grassland compared to the forest and the forest vegetation of this time period is the mixed conifer and deciduous broad-leaved forest. YJ-Ib period (15,400-14,750yrB.P.) is correlated with the Late glacial (or the Last Glacial Maximum) and the distribution area of grassland became wider compared to the forest. While the forest vegetation of this time period is the mixed conifer and deciduous broad-leaved forest, a difference exists in terms of the dominant tree species. YJ-II period (about 14,650-14,100yrB.P.) is correlated with the Last glacial while the distribution area of grassland became even wider than the forest compared to the YJ-Ib in case of the vegetation at the time and the forest vegetation of this time period is the coniferous forest. (2) Both YJ-I period and YJ-II period were relatively cold and dry compared the End of Late Glacial (about 12,000-10,000yrB.P.)~Early Holocene (10,000-8,500yrB.P.), Also, YJ-II period was relatively colder than the YJ-I period and the YJ-Ib period was relatively more humid than the YJ-Ia period.

A Study on Changes in Habitat Enviroment of Wild Birds in Urban Rivers according to Climate Change - A Case Study of Tancheon Ecological and Landscape Conservation Area - (기후변화에 따른 도시하천의 야생조류 서식환경 변화 연구 - 탄천 생태·경관보전지역를 사례로 -)

  • Han, Jeong-Hyeon;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.79-95
    • /
    • 2024
  • The purpose of this study was to find the changes in the habitat of wild birds caused by climate change in urban rivers and protected areas that greatly require ecological functions. In the future, this study can be used as a management index to protect the urban river ecosystem and maintain the health of sustainable urban rivers, thereby ensuring biodiversity. The Tancheon Ecological and Landscape Conservation Area, selected as a target site, has been affected by climate change. The four seasons of Korea have a distinct temperate climate, but the average annual temperature in Seoul has risen by 2.4-2.8℃ over the last 40 years. Winter temperatures tended to gradually increase. Precipitation, which was concentrated from June to August, is now changing into localized torrential rain and a uniform precipitation pattern of several months. Climate change causes irregular and unforeseen features. Climate change has been shown to have various effects on urban river ecosystems. The decrease in the area of water surface and sedimentary land impacted river shape change and has led to large-scale terrestrialization. Plants showed disturbance, and the vegetation was simplified. The emergence of national climate change indicator species, the development of foreign herbaceous plants, the change of dry land native herbaceous species, and wet intelligence vegetation were developed. Wild birds appeared in the territory of winter-summer migratory. In addition, species change and the populations of migratory birds also occurred. It was judged that fluctuations in temperature and precipitation and non-predictive characteristics affect the hydrological environment, plant ecology, and wild birds connecting with the river ecosystem. The results of this study were to analyze how climate change affects the habitat of wild birds and to develop a management index for river ecological and landscape conservation areas where environmental and ecological functions in cities operate. This study can serve as a basic study at the level of ecosystem services to improve the health of urban rivers and create a foundation for biodiversity.

Ecological Studies on the Transition of Sheath Blight of Rice in Korea (한국(韓國)에서의 벼 잎집무늬마름병 발생변동(發生變動)에 관(關)한 생태학적(生態學的) 연구(硏究))

  • Yu, Seung-hun
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.283-316
    • /
    • 1977
  • In an attempt to obtain a basic information to develop an effective integrated system of controlling sheath blight of rice in Korea, the transition of this disease, the variation of cultural characters and pathogenicity of the pathogen, environmental conditions affecting the disease outbreak and varietal resistance have been investigated. 1. Rice sheath blight which has been minor disease in the past was widely spread, especially since 1971. This disease has promptly spread all over the country and infected 65.2% of total rice growing area in 1976. Various factors are considered to be related to such transition of this disease. Above all, increace of application of nitrogenous fertilizer, early season and earlier cultivation of rice, introduction of more susceptible "Tongil" varieties etc. must be important factors influencing the outbreak of this disease. 2. Great variations in cultural characteristics-such as mycelial growth rate, color of the medium, amount of the aerial mycelium, shape and color of the sclerotia- and in the pathogenicity of isolates of the pathogen, Thanatephorus cucumeris Dank were observed. The optimum temperature for mycelial growth also varied with isolates, from $25^{\circ}C$ to $30^{\circ}C$. There were not necessarily any correlation between curtural characteristics and pathogenicity of isolates of Thanatephorus cucumens. 3. Mycelial grow th of isolates of Thanatephorus cucumens on the PDA medium were correlated with the air temperatures of the region where the isolates were collected. The isolates from the regions with high temperature grew well on PDA medium at $35^{\circ}C$ than those from the region with low temperature, on the other hand, the isolates from the regions with the low temperature grew well on the same medium at $12^{\circ}C$ than those from the regions with high temperature. 4. Pectin polygalacturonase (PG) and cellulase (Cx) were most active on the 3rd day after inoculation on the leaves of rice plant with Thanatephorus cucumeris, whereas pectin methylestrase (PE) was most active on the 4th day after inoculation. Relationship between the activities of PE of isolates and the strength of pathogenicity of isolates was obtained, but PG and cellulase activities were not correlated with pathogenicity of isolates. 5. The tolerence of sclerotia from in-vitro culture to low temperature varied with their water content, the dried cultural sclerotia were more tolerent than wet ones, Dried cultural sclerotia maintained almost 100% germinability for 45 days at $-20^{\circ}C$, whereas wet sclerotia lost viability at $-5^{\circ}C$. The germination ratio of the sclerotia after overwintering changed from 18% to 70% according to the water content of the test paddy fields and the ratio was low in wet paddy condition. 6. To investigate the host range of this fungi in and near paddy field, 17 weeds were inoculated with fungi. The lesions of sheath blight disease was obserbed on Sagittaria trifolia L., Echinochloa crusgalli P. Beauv., Monochoria vaginal is Presl, Polygonum Hydropiper L., Eclipta prostrata L., Digitaria sanguinalis Scapoli. 7. When the level of nitrogen applied was doubled over standard level, total nitrogen content in rice sheath increased, ami when silicate was applied, starch content in rice sheath decreased, inducing the rice plants more susceptible to sheath blight disease. Increased dressing of potash ferilizer reduced the incidence of sheat blight disease. 8. The percentage of infected stems in the early period increased more in the narrow hill plot than in the wide hill plot, but in the late period this tendency was inversed; the percentage of infected stems as well as severity in the wide hill plot increased more compared to the narrow hill plot, and the disease severity in the one plant per hill plot was also low. The number of stems in the wide hill plot was more than the number of stems in the narrow hill plot. This indicates that the microclimate, such as the relative humidity, in the narrow hill plot was more favorable for the development of this disease. 9. There was a high negative correlation between the disease severity of varieties to the sheath blight and the maturity of the varieties, that is, the early varieties were more susceptible than the late ones, and much-tillering varieties usually showed more infection than less tillering varieties. 10. No relationship was obtained between the percentage of infected stems in the early period and the severity after heading, whereas a distinct relationship was obtained between former and latter after Aug. 10.

  • PDF

Taxonomical Classification and Genesis of Jeju Series in Jeju Island (제주도 토양인 제주통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.230-236
    • /
    • 2010
  • Jeju Island is a volanic island which is located about 96 km south of Korean Peninsula. Volcanic ejecta, and volcaniclastic materials are widespread as soil parent materials throughout the island. Soils on the island have the characteristics of typical volcanic ash soils. This study was conducted to reclassify Jeju series based on the second edition of Soil Taxonomy and to discuss the formation of Jeju series in Jeju Island. Morphological properties of typifying pedon of Jeju series were investigated, and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon has dark brown (10YR 3/3) silt clay loam A horizon (0~22 cm), strong brown (7.5YR 4/6) silty clay BAt horizon (22~43 cm), brown (7.5YR 4/4) silty clay Bt1 horizon (43~80 cm), brown (7.5YR 4/6) silty clay loamBt2 horizon (80~105 cm), and brown (10YR 5/4) silty clay loam Bt3 horizon (105~150 cm). It is developed in elevated lava plain, and are derived from basalt, and pyroclastic materials. The typifying pedon contains 1.3~2.1% oxalate extractable (Al + 1/2 Fe), less than 85%phosphate retention, and higher bulk density than 0.90 Mg $m^{-3}$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 22 to 150 cm, and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol. Its has 0.9% or more organic carbon in the upper 15 cm of the argillic horizon, and can be classified as Humult. It dose not have fragipan, kandic horizon, sombric horizon, plinthite, etc. in the given depths, and key out as Haplohumult. A hoizon (0~22 cm) has a fine-earth fraction with both a bulk density of 1.0 Mg $cm^{-3}$ or less, and Al plus 1/2 Fe percentages (by ammonium oxalate) totaling more than 1.0. Thus, it keys out as Andic Haplohumult. It has 35% or more clay at the particle-size control section, and has thermic soil temperature regime. Jeju series can be classified as fine, mixed, themic family of Andic Haplohumults, not as ashy, thermic family of Typic Hapludands. In the western, and northern coastal areas which have a relatively dry climate in Jeju Island, non Andisols are widely distributed. Mean annual precipitation increase 110 mm, and mean annual temperature decrease $0.8^{\circ}C$ with increasing elevation of 100m. In the western, and northern mid-mountaineous areas Andisols, and non Andisols are distributed simultaneously. Jeju series distributed mainly in the western and northern mid-mountaineous areas are developed as Ultisols with Andic subgroup.

Fly Ash Application Effects on CH4 and CO2 Emission in an Incubation Experiment with a Paddy Soil (항온 배양 논토양 조건에서 비산재 처리에 따른 CH4와 CO2 방출 특성)

  • Lim, Sang-Sun;Choi, Woo-Jung;Kim, Han-Yong;Jung, Jae-Woon;Yoon, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.853-860
    • /
    • 2012
  • To estimate potential use of fly ash in reducing $CH_4$ and $CO_2$ emission from soil, $CH_4$ and $CO_2$ fluxes from a paddy soil mixed with fly ash at different rate (w/w; 0, 5, and 10%) in the presence and absence of fertilizer N ($(NH_4)_2SO_4$) addition were investigated in a laboratory incubation for 60 days under changing water regime from wetting to drying via transition. The mean $CH_4$ flux during the entire incubation period ranged from 0.59 to $1.68mg\;CH_4\;m^{-2}day^{-1}$ with a lower rate in the soil treated with N fertilizer due to suppression of $CH_4$ production by $SO_4^{2-}$ that acts as an electron acceptor, leading to decreases in electron availability for methanogen. Fly ash application reduced $CH_4$ flux by 37.5 and 33.0% in soils without and with N addition, respectively, probably due to retardation of $CH_4$ diffusion through soil pores by addition of fine-textured fly ash. In addition, as fly ash has a potential for $CO_2$ removal via carbonation (formation of carbonate precipitates) that decreases $CO_2$ availability that is a substrate for $CO_2$ reduction reaction (one of $CH_4$ generation pathways) is likely to be another mechanisms of $CH_4$ flux reduction by fly ash. Meanwhile, the mean $CO_2$ flux during the entire incubation period was between 0.64 and $0.90g\;CO_2\;m^{-2}day^{-1}$, and that of N treated soil was lower than that without N addition. Because N addition is likely to increase soil respiration, it is not straightforward to explain the results. However, it may be possible that our experiment did not account for the substantial amount of $CO_2$ produced by heterotrophs that were activated by N addition in earlier period than the measurement was initiated. Fly ash application also lowered $CO_2$ flux by up to 20% in the soil mixed with fly ash at 10% through $CO_2$ removal by the carbonation. At the whole picture, fly ash application at 10% decreased global warming potential of emitted $CH_4$ and $CO_2$ by about 20%. Therefore, our results suggest that fly ash application can be a soil management practice to reduce green house gas emission from paddy soils. Further studies under field conditions with rice cultivation are necessary to verify our findings.

A study of compaction ratio and permeability of soil with different water content (축제용흙의 함수비 변화에 의한 다짐율 및 수용계수 변화에 관한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2456-2470
    • /
    • 1971
  • Compaction of soil is very important for construction of soil structures such as highway fills, embankment of reservoir and seadike. With increasing compaction effort, the strength of soil, interor friction and Cohesion increas greatly while the reduction of permerbilityis evident. Factors which may influence compaction effort are moisture content, grain size, grain distribution and other physical properties as well as the variable method of compaction. The moisture content among these parameter is the most important thing. For making the maximum density to a given soil, the comparable optimum water content is required. If there is a slight change in water content when compared with optimum water content, the compaction ratio will decrease and the corresponding mechanical properties will change evidently. The results in this study of soil compaction with different water content are summarized as follows. 1) The maximum dry density increased and corresponding optimum moisture content decreased with increasing of coarse grain size and the compaction curve is steeper than increasing of fine grain size. 2) The maximum dry density is decreased with increasing of the optimum water content and a relationship both parameter becomes rdam-max=2.232-0.02785 $W_0$ But this relstionship will be change to $r_d=ae^{-bw}$ when comparable water content changes. 3) In case of most soils, a dry condition is better than wet condition to give a compactive effort, but the latter condition is only preferable when the liquid limit of soil exceeds 50 percent. 4) The compaction ratio of cohesive soil is greeter than cohesionless soil even the amount of coarse grain sizes are same. 5) The relationship between the maximum dry density and porosity is as rdmax=2,186-0.872e, but it changes to $r_d=ae^{be}$ when water content vary from optimum water content. 6) The void ratio is increased with increasing of optimum water content as n=15.85+1.075 w, but therelation becames $n=ae^{bw}$ if there is a variation in water content. 7) The increament of permeabilty is high when the soil is a high plasticity or coarse. 8) The coefficient of permeability of soil compacted in wet condition is lower than the soil compacted in dry condition. 9) Cohesive soil has higher permeability than cohesionless soil even the amount of coarse particles are same. 10) In generall, the soil which has high optimum water content has lower coefficient of permeability than low optimum water content. 11) The coefficient of permeability has a certain relations with density, gradation and void ratio and it increase with increasing of saturation degree.

  • PDF