• Title/Summary/Keyword: 습윤 상태

Search Result 210, Processing Time 0.025 seconds

Uniformity of Large Gypsum-cemented Specimens Fabricated by Air Pluviation Method (낙사법으로 조성된 대형 석고 고결시료의 균질성)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Cho, Yong-Soon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2008
  • The method to prepare the large cemented sand specimen for calibration chamber test by air-pluviation is investigated in this study. The uniformity of cemented specimen is evaluated by performing the CPTs, DMTs, and bender element tests in the calibration chamber. The sand particles, pre-wetted with 0.5% water content, are mixed with gypsum to provide the homogeneous coating of gypsum particles on the grain surface. It was shown that the pre-wetting of particle surface is effective to minimize the potential for segregation between sands and gypsum during air-pluviation. It was observed that the extreme void ratios ($e_{max}\;and\;e_{mix}$) of the mixture of pre-wetted sand and gypsum powder increase at lower gypsum content while those of the mixture of dry sand and gypsum decrease with increasing gypsum content. It was also shown from the test results that large cemented specimens reconstituted in calibration chamber by rainer system are quite uniform in vertical and horizontal directions.

A Study on the Applicability of Acrylic Water Leak Repair Materials used to Repair Cracks in Conduits and Underground Structures (관거 및 지하구조물 균열 보수에 사용되는 아크릴 누수 보수재의 적용성에 대한 연구)

  • Eunmi Lee;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.139-146
    • /
    • 2024
  • Various injection materials, such as asphalt-based injection materials, urethane-based injection materials, cement- based injection materials, and acrylic-based injection materials, are used for the repair of aged conduits and underground structures with cracks. In this study, research was conducted on an environmentally friendly acrylic- based leak repair material that exhibits good curing properties even in humid conditions and stability in temperature fluctuations. To compare the performance of the improved acrylic leak repair material with the existing acrylate injection material, experiments were conducted using KS standard methods, including underwater length change rate tests, underwater leakage resistance tests, and chemical performance tests. The comparative experiments revealed that the improved acrylic leak repair material showed no changes in shrinkage due to humidity, temperature variations, or chemical reactions compared to the existing acrylate injection material. In the underwater resistance test, the improved acrylic leak repair material did not show any leakage. Additionally, to assess the environmental impact of the improved acrylic leak repair material, acute fish toxicity tests and acute oral toxicity tests were conducted, and the results showed no mortality and no specific concerns with the test specimens. The experimental results led to the conclusion that the improved acrylic leak repair material is considered to be superior in performance, environmentally safe, and harmless to the human body. Based on various experimental results, it is inferred that the improved acrylic leak repair material is suitable for use as a repair material for cracks in manholes and underground structures compared to the existing acrylate repair material. This study aims to propose valuable data for future technological development by evaluating the applicability of acrylic leak repair materials.

Performance Evaluation of Soil Vapor Extraction Using Prefabricated Vertical Drain System (연직배수시스템을 이용한 토양증기추출공법의 성능 평가)

  • Shin, Eun-Chul;Park, Jeong-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.9-18
    • /
    • 2007
  • Soil vapor extraction (SVE) is an effective and cost efficient method of removing volatile organic compounds (VOCs) and petroleum hydrocarbons from unsaturated soils. However, soil vapor extraction becomes ineffective in soils with low gas permeability, for example soils with air permeabilities less than 1 Darcy. Incorporating PVDs in an SVE system can extend the effectiveness of SVE to lower permeability soils by shortening the air flow-paths and ultimately expediting contaminant removal. The objective of the research described herein was to effectively incorporate PVDs into a SVE remediation system. The test results show that the gas permeability was evaluated for four different equivalent diameters, increasing the equivalent diameter results in a decrease in the calculated gas permeability. It was found that the porosity for the dry condition was greater than that of the wet condition and will allow flow rate for the same vacuum flow, offering a low resistance to the air flow.

Analysis of Watershed Hydrologic Responses using Hydrologic Index (수문지수를 이용한 유역의 수문반응 분석)

  • Park, Yoonkyung;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.785-794
    • /
    • 2014
  • Hydrologic responses in watershed are determined by complex interactions among climate, land use, soil and vegetation. In order to effectively investigate hydrologic response in watershed, one needs to analyze the characteristics of climate as well as other factors. In this study, the relative contribution of climate factors and watershed characteristics on hydrologic response is investigated by using hydrologic indexes such as the aridity index and the Horton index. From preliminary analysis, it is shown that the Horton index is proper in terms of classifying hydrologic responses in main natural watersheds of south Korea. While climate and watershed characteristics both contributes to hydrologic responses, the degree contributed from each factor is changed depending on annual climatic humid conditions. In dry conditions, the climate factor is the predominant influence on hydrologic responses. However, in wet conditions, the contribution of watershed characteristics on hydrologic responses is relatively increased.

Preparation and Properties of Poly(vinyl alcohol)/Chitosan Blend Films (폴리(비닐 알코올)/키토산 블렌드 필름의 제조 및 특성)

  • 정민기;김대선;최용혁;손태원;권오경;임학상
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.253-262
    • /
    • 2004
  • Poly(vinyl alcohol)(PVA)/chitosan blend films with non-toxicity, biodegradability, and biocom-patibility were prepared by solution casting. Variation of the physicochemical properties of the blend films was investigated through to several analysis methods. Examination of antibacterial properties revealed that bacterio-static ratios of all blend samples containing chitosan more than 10 wt% were greater than 99.9%. Moisture regain was increased with increasing chitosan content but the degree of swelling was decreased. Up to chitosan content 15 wt%t, the melting and crystallization temperature of blend films was increased with chitosan content. The blends containing chitosan content 10 and 15 wt% gave melting temperature 229 and 228$^{\circ}C$, respectively. However, the melting temperature was decreased if chitosan content exceeded 20 wt%. The mechanical properties of the blend films were increased with increasing chitosan content in both dry and wet states. The blend film including 15 wt% chitosan exhibited unusually high tensile strength.

Use of Phosphate Coated Urea to Decrease Ammonia Volatilization Loss from Direct Seeded Rice Field at Early Stage (건답(乾畓) 직파(直播) 논에서 초기(初期)의 암모니아 휘산(揮散) 경감(輕減)을 위한 인산(燐酸) 입힌 요소(尿素)의 효과(效果))

  • Jung, Yeong-Sang;Ha, Sang-Keun;Cho, Byung-Ok;Lee, Ho-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.8-14
    • /
    • 1996
  • Use of phosphate coated urea to decrease ammonia volatilization from directly seeded paddy under dryland condition at early stage was tested. Effect on urea hydrolysis was investigated through laboratory study comparing with use of thiourea, a urease inhibitor, under different water content. A field measurement of volitilized ammonia with phosphate-glycerol ammonia absorber was conducted for surface treated urea, phosphate coated urea, phosphate coated slow-release fertilizer and organic fertilizer. Through laboratory study, hydrolysis rate of phosphate coated urea at three days after treatment was lower than that of urea, however, the rate after one week was same. Thiourea addition retarted urea hydrolysis. By field measurement, ammonia volatilization was effectively reduced by use of phosphate coated urea.

  • PDF

Process Development for Synthesis of Ultra-low Dielectric SiO2 Aerogel Thin by Freeze Drying (동결건조에 의한 극저유전성 실리카 에어로겔 박막 합성공정 개발)

  • 현상훈;김태영
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.3
    • /
    • pp.307-318
    • /
    • 1999
  • 동결건조법에 의한 저유전성 실리카 박막의 제조공정 개발 및 층간 절연물질로의 응용성이 연구되었다. 코팅용 폴리머 실리카 졸은 TEOS와 이소프로판올(iso-propanol:IPA)또는 터트부탄올(tert-butanol:TBA)을 용매로한 2단계 공정에 의하여 제조되었으며, 이들 졸을 p-Si(111)웨이퍼 상에 스핀코팅한 습윤겔 박막을 동결건조 하여 다공성 실리카 박막을 제조하였다. 균일한 박막 코팅층을 얻을 수 있는 실리카 졸의 최적 점도범위는 IPA와 TBA를 용매로 한 실리카 졸의 경우 각각 10~14 cP와 20~30cP 정도였으며 스핀속도는 2000 rpm 이상이었다. 결함이 없는 다공성 실리카 박막은 TBA(빙점 $25^{\circ}C$)를 동결용매로 하여-196$^{\circ}C$까지 급랭시킨 후 $0^{\circ}C$와 0.1 torr 까지 가열 감압한 상태에서 고상의 TBAFMF 모두 제거한 다음 20$0^{\circ}C$까지 열처리하여 제조되었다. 다공성 실리카 박막의 두께는 졸의 타입과 스핀코팅 속도에 의해 2500~15000$\AA$범위 내에서 제어가 가능하였으며 이들 막의 밀도와 유전상 수 값은 각각 0.9$\pm$0.3g/㎤(기공율 60$\pm$10%)과 2.4 정도였다.

  • PDF

Struvite 침전법을 이용한 폐수내 질소와 인의 제거 및 회수 - Struvite의 재이용성 및 효율성 -

  • Song, Myeong-Gi;Jeong, Jin-Hwa;Park, Hyeon-Ju;Na, Chun-Gi
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.517-521
    • /
    • 2008
  • Struvite의 최적 생성조건은 NH$_4$-N의 초기농도에 관계없이 모두 NH$_4^+$, PO$_4^{3-}$ 및 Mg$^{2+}$가 등몰비이고 pH 10.5이었다. Struvite 침전반응에서 NH$_4$-N 및 PO$_4$-P 제거율에 미치는 struvite seeding 효과는 습윤상태의 struvite를 seeding할 경우 그 효과가 거의 없었으나 건조된 struvite를 seeding할 경우 NH$_4$-N의 제거율은 증가되지만 PO$_4$-P의 제거율은 감소되는 경향을 나타냈다. 이는 건조과정에서 struvite의 NH$_4$-N가 휘산되어 소실되었기 때문이다. Mg와 P원으로서 struvite의 재이용을 위한 적정 건조온도는 100$^{\circ}C$ 이하였으며 그 이상 온도에서는 struvite가 $NH_4MgPO_4\cdot6H_2O$형에서 MgPO$_4$형으로 상전이점에 따라 struvite seeding에 의한 NE$_4$-N의 제거율이 현저히 감소되었다. 건조된 struvite는 초기 NH$_4$-N의 몰농도 대비 50%를 seeding할 경우 60% 이상의 NH$_4$-N를 제거하였으며, seeding량을 150%로 증가시킬 경우 90% 이상의 NH$_4$-N 제거율을 얻을 수 있었다. 그러나 struvite를 반복 재사용할 경우 재사용 횟수에 비례하여 NH$_4$-N의 제거율은 감소하는 경향을 보여 재사용 횟수가 제한적임을 알 수 있었다.

  • PDF

Preparation and characterization of poly(arylene ether sulfone) block copolymers with perfluorocyclobutane groups for fuel cell application (고분자 연료전지를 위한 불소계 poly(arylene ether) 블록 공증합체 전해질막의 합성 및 특성연구)

  • Kim, Jeong-Hoon;Yoo, Min-Chul;Chang, Bong-Jun;Lee, Soo-Bok;Lee, Yong-Taek;Shin, Chong-Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.329-331
    • /
    • 2006
  • 연료전지용으로 많이 사용되는 전불소계 고분자인 Nafion은 좋은 기계적, 화학적 안정성 및 높은 이온전도도에도 불구하고 고가의 생산단가, 높은 메탄올 투과도, 그리고 MEA 재활용 문제 등으로 인해 상업적 응용에 제한이 있다. 본 연구는 불소그룹을 함유한 술폰화된 아릴렌이서계 블록 공중합체 고분자 전해질막의 제조 및 연료전지 특성에 관한 것이다. 이러한 고분자를 제조하기 위하여 양말단에 불소계 비닐기를 가지면서, 상온에서 술폰화 가능한 biphenyl계 단량체와 술폰화가 불가능한 sulfonyl계 단량체를 각각 합성하였으며, 이들로부터 다양한 몰조성과 분자량을 갖는 올리고머를 포함한 일련의 perfluorocyclobutane기를 포함하는 블록 공중합체를 열적 고리화 부가중합을 사용하여 합성하였다. 제조된 블록 공중합체를 상온에서 술폰화제인 chlorosulfonic acid를 이용하여 선택적으로 후술폰화시켜 강산 이온기인 sulfonic acid를 블록 올리고머에 도입하였다. 합성된 고분자들의 연료전지 특성을 Nafion-115와 비교하였다. 술폰화가 되는 올리고머 블록의 비율 증가에 따라 이온교환능력이 증가하였고, 그에 따라 높은 함수율과 이온 전도도를 나타내었으며 건조 및 습윤 상태에서도 기계적 강도가 우수하였다. 최적화된 블록공중합체를 대상으로 MEA를 제조하여 연료전지 초기성능을 측정한 결과 Nafion과 유사한 전기화학적 성능을 나타내었다.

  • PDF

Moisture Sensitivity and Aging Effects of Recycled Wastepaper fiber Cement Composites (폐지섬유보강 시멘트 복합체의 수분민감성 및 열화특성)

  • 원종필;배동인;박찬기;박종영
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.148-155
    • /
    • 2002
  • This research investigates the moisture and aging effects of wastepaper fiber-cement composites. Wastepaper fibers is obtained by a dry process. Wastepaper fiber-cement composites was manufactured by the hatscheck process. The effects of moisture and aging on the performance of wastepaper fiber-cement composites were investigated through accelerated laboratory tests simulating the effects of moisture sensitivity and wet-dry cycles as well as freeze-thaw cycles and long-term drying. They were shown to possess acceptable moisture and aging performance compared with virgin fiber cement composites.