• 제목/요약/키워드: 습식제련

검색결과 44건 처리시간 0.023초

보론산의 용액 화학 (Aqueous Chemistry of Boric Acid)

  • 이만승
    • 자원리싸이클링
    • /
    • 제27권4호
    • /
    • pp.23-28
    • /
    • 2018
  • 보론을 함유한 광석이나 2차자원으로부터 보론을 효과적으로 회수하기 위한 습식공정을 개발하기 위해서는 수용액에서 보론산의 농도분포 자료가 필요하다. 보론산은 pH 6 이하의 용액에서 $B(OH)_3$로, pH 12 이상의 용액에서는 $B(OH)_4{^-}$로 존재한다. 그러나 pH 6에서 11사이의 범위에서는 $B(OH)_3$$B(OH)_4{^-}$간의 중합체 형성반응이 일어난다. $B_3O_3(OH)_4{^-}$, $B_4O_5(OH){_4}^{2-}$와 같은 중합체의 몰분율은 보론산의 농도에 비례한다.

타이타늄 철석으로부터 염산 침출에 의한 고순도 이산화 타이타늄 회수 (Recovery of High Purity TiO2 Powder from Ilmenite by Hydrochloric Acid Leaching)

  • 안형훈;이만승
    • 자원리싸이클링
    • /
    • 제28권5호
    • /
    • pp.68-73
    • /
    • 2019
  • 타이타늄 철석은 이산화 타이타늄 제조를 위해 사용되는 주요 광석 중 하나이다. 순도 99.9% 이상의 이산화 타이타늄 제조를 위해, 타이타늄 철석에 존재하는 철(III), 규소(IV) 그리고 망간(II)과 같은 불순물로부터 타이타늄(IV)을 분리해야 한다. 본 논문에서는 타이타늄 철석으로부터 염산 침출 및 고순도 타이타늄(IV) 용액으로부터 가수분해를 통해 고순도 이산화 타이타늄 습식 제련 공정을 조사했다. 타이타늄(IV), 철(III), 규소(IV) 그리고 망간(II)의 침출률에 대한 염산 농도, 광액농도 그리고 침출 시간에 따른 영향에 대해 조사했고 최적 침출 조건을 얻었다. 타이타늄(IV)을 가수분해하기 위한 중화제로 수산화암모늄 및 수산화나트륨 용액을 사용했다. 수산화 암모늄 용액으로 가수 분해된 침전물을 소성하여 아나타제상의 이산화 타이타늄을 얻었다. 타이타늄 철석으로부터 고순도 이산화 타이타늄 분말 제조를 위한 습식 제련 공정이 개발 가능하다.

동스크랩의 리사이클링 (Recycling of Copper Scrap)

  • 손호상
    • 자원리싸이클링
    • /
    • 제28권3호
    • /
    • pp.3-14
    • /
    • 2019
  • 동은 약 11,500년 전에 인류가 최초로 사용한 금속이다. 그러나 동은 지각 중에 그다지 풍부하지 않은 금속이다. 동은 높은 열전도도와 전기전도도 그리고 어느 정도의 내식성을 가지고 있다. 특히 동은 품질의 저하 없이 100 % 리사이클링할 수 있는 금속이다. 또 동스크랩을 리사이클링하면 1차 지금 생산과 비교하여 에너지 및 환경부하를 저감할 수 있다. 따라서 최근에는 동사용량의 약 30 %는 리사이클링에 의해 공급되고 있다. 동스크랩은 1차 제련소나 2차제련소에서 정련하고 있으며, 리사이클링에 사용하는 노나 공정은 스크랩의 품질이나 등급에 따라 차이가 있다. 동함유 2차 자원은 동함유량에 따라 정련이 필요하며, 최종적으로 전해정련에 의해 전기동을 생산하고 있다. 본 연구에서는 동의 1차지금 생산 및 리사이클링 공정에 대해 고찰하였다.

재생연 제련 부산물인 황산연으로부터 정제 질산연의 제조 (Preparation of Purified Lead Nitrate from Lead Sulfate Generated from the Lead-acid Battery Smelter as By-products)

  • 이진영;한춘;신중극;김성규;이화영;오종기
    • 자원리싸이클링
    • /
    • 제7권2호
    • /
    • pp.31-38
    • /
    • 1998
  • 2차납 제련공정에서 발생한 주성분이 황산납인 연진으로부터 고부가가치제품인 정제 질산납을 생산하는 습식공정을 개발하였다. 본 공정은 탄산염에 의한 탄산화 공정과 저농도 질산용액을 이용한 침출공정 및 정제 공정으로 구성되어 있으며 본 공정을 통하여 99%이상의 순도를 가진 질산납을 제조할 수 있었다.

  • PDF

저품위 동광으로부터 습식제련공정에 의한 구리의 분리 공정 연구 (Study for Seperation Process of Copper from the Low-grade Copper Ore by Hydrometallrugical Process)

  • 신동주;주성호;이동석;전호석;신선명
    • 자원리싸이클링
    • /
    • 제30권5호
    • /
    • pp.57-66
    • /
    • 2021
  • 본 연구에서는 습식제련 공정을 이용하여 저품위 동광으로부터 구리를 회수하고자 하였다. 침출시료는 저품위 동광을 파·분쇄하여 0.355 mm 이하로 입도분리하였으며, 1.5%의 구리, 4.7%의 철, 1.0%의 망간 그리고 0.3%의 아연을 함유하고 있다. XRD 분석 결과 구리는 산화물 형태로 관찰이 되었으며3 M 황산, 80℃ 조건에서 97%의 구리를 침출하였다. 침출용액으로부터 LIX9894N를 사용한 용매추출 공정을 통해 구리를 철, 망간, 아연으로부터 회수하였다. 구리와 다른 금속들 사이의 분리 경향은 분배비와 분리계수를 통해 확인하였다. McCabe-Thiele Diagram을 작도하여, 구리를 회수하는 최적 조건으로 5 vol.% LIX984N, O/A 비율 0.5, 향류 2단 추출을 설정하였다. 이 조건에서 99%의 구리를 추출할 수 있었으며, 2 M 황산으로 탈거한 후에 1.6 g/L의 구리를 함유한 황산구리 용액을 얻을 수 있었다.

황산에 의한 페로망간 집진분 중의 망간 침출 (Sulfuric Acid Leaching of Manganese from Ferromanganese Dust)

  • 박수지;손호상
    • 자원리싸이클링
    • /
    • 제24권6호
    • /
    • pp.24-30
    • /
    • 2015
  • 본 연구에서는 페로망간 제조공정에서 발생한 집진분의 황산침출에 대하여 조사하였다. 황산의 농도, 반응온도, 교반속도, 입자크기 및 고-액비가 집진분 중의 Mn과 Fe의 침출에 미치는 영향에 대하여 검토하였다. Mn과 Fe의 침출속도는 황산의 농도가 높고 반응온도가 높을수록 높아졌다. 실험결과를 입자수축모델을 이용하여 검토한 결과 침출반응은 입자표면에서의 화학반응에 의해서 율속되는 것으로 생각된다. Mn과 Fe 침출반응의 활성화에너지는 각각 79.55 kJ/mol과 77.48 kJ/mol로 계산되었다.

다양한 자원으로부터 은의 화학적 침출 (Chemical Leaching of Silver from Diverse Resources)

  • 행위동;이만승
    • 자원리싸이클링
    • /
    • 제26권1호
    • /
    • pp.3-10
    • /
    • 2017
  • 은은 특수한 물성을 지니고 있으며 첨단소재용 원료로 사용된다. 따라서 첨단소재를 제조하는데 필요한 고순도 은을 다양한 자원으로부터 회수하는 공정을 개발하는 것은 매우 중요하다. 본 논문에서는 여러 자원으로부터 은의 침출을 위해 개발된 공정을 조사하였다. 무기산(질산과 황산)과 무기산 및 산화제(오존, 산소, 과산화수소, 3가 철이온)의 혼합용액에 의한 은의 침출공정의 장단점을 비교하였다. 또한 thiourea와 thiosulfate에 의한 은의 침출과 무기산에 의한 침출에 대해 환경에 미치는 영향을 중심으로 비교하였다.

습식제련공정에 의한 석유화학 폐촉매로부터 니켈의 회수 (Recovery of Nickel from Spent Petroleum Catalyst by Hydrometallurgical Process)

  • 김종화;송주영;양석진;전성균
    • 한국응용과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.273-281
    • /
    • 2010
  • Nickel recovery method was studied by the wet process from the catalyst used in hydrogenation process. Nickel content in waste catalyst was about 16%. At the waste catalyst leaching system by the alkaline solution, selective leaching of nickel was possible by amine complex formation reaction from ammonia water and ammonium chloride mixed leachate. The best leaching condition of nickel from mixed leachate was acquired at the condition of pH 8. LIX65N as chelating solvent extractant was used to recover nickel from alkaline leachate. The purity of recovered nickel was higher than 99.5%, and the whole quantity of nickel was recovered from amine complex.

리튬-청정 에너지 기술의 핵심금속: 1차 및 2차 자원으로부터 리튬 확보를 위한 도전과 기회에 대한 종합적 고찰 (Lithium - A Critical Metal for Clean Energy Technologies: A Comprehensive Review on Challenges and Opportunities for Securing Lithium from Primary and Secondary Resources)

  • ;김민석;이찬기;정경우;이재천
    • 자원리싸이클링
    • /
    • 제28권5호
    • /
    • pp.3-18
    • /
    • 2019
  • 청정에너지에 대한 수요가 증가함에 따라 리튬이온배터리의 소비가 꾸준히 늘어날 것으로 예상된다. 따라서 전세계적으로 리튬의 안정적 공급이 중요한 문제가 되고 있다. 저품위 광석, 점토, 해수 그리고 폐리튬이온배터리 등과 같은 다양한 자원으로부터 리튬의 회수를 위한 공정과 기술들이 개발되어져 왔지만, 대부분의 리튬은 간수와 스포듀민 광석으로부터 상업적으로 생산되고 있다. 특히, 휴대폰과 전기자동차(EVs)를 포함한 여러 분야에서 발생하고 있는 사용 후 리튬이온배터리에 대한 재활용 기술들의 상용화는 많은 잠재력을 가지고 있다. 본 고찰은 폐리튬이온배터리에 대하여 새롭게 개발된 리튬 회수 공정과 더불어 광물과 간수를 이용하기 위한 상용공정 및 최신 기술들을 소개한다. 아울러 미래의 리튬 공급이 기술적인 관점에서 논의된다. 저품위 광석으로부터 리튬 회수를 위하여 개발되고 있는 최신공정들은 주로 건식+습식 제련에 기반을 둔 접근방법에 초점을 두고 있으며, 단지 몇몇 방법들만이 안정화 되었다. 리튬이온배터리의 소비(현재 생산되는 리튬의 56%)에 비교하여 리튬의 낮은 재활용율(1% 미만) 때문에 2차 자원의 처리는 굉장한 기회로서 앞을 내다보는 것일 수 있다. 또한 탄소경제, 환경과 에너지에 대한 우려를 생각해 볼 때, 습식제련공정이 이러한 이슈를 해결할 수 있을 것이다.

조산화아연의 정제과정에서 발생된 2차분진으로부터 유용금속원소(Zn, Pb)의 분리회수에 관한 연구 (A Study on the Separation and Recovery of Useful Metallic Elements(Zn, Pb) from the 2nd Dust in Refining of Crude-Zinc Oxide)

  • 윤재홍;윤치현
    • 자원리싸이클링
    • /
    • 제30권1호
    • /
    • pp.66-76
    • /
    • 2021
  • 전기로 제강분진 중에는 아연(Zn), 납(Pb)등과 같은 유가금속들이, 다양한 화합물(산화물 또는 염화물 등)의 형태로 다량 함유되어 있다. 전기로 제강분진 내에 함유되어 있는 이들 유용금속원소들을, 가장 효율적이며 안정적으로 회수할 수 있는 대표적인 방법으로서는 Rotary Kiln Process가 있다. Rotary Kiln Process는 전기로 제강분진에 환원제(Coke, 무연탄)와 석회석(염기도 제어용)을 첨가하여 성형한 후에 가열함으로서, 아연성분을 조산화아연(Crude Zinc Oxide : 60% Zn)의 형태로 회수하는 방법으로 오래전에 이미 상용화되었으며, 지금도 공정 및 설비의 단점을 개선하기 위한 연구개발을 지속적으로 수행하고 있다. 현재 국내에서도 전기로 제강분진을 재활용하여 조산화아연을 생산하는 다수의 상용화공장들이 가동되고 있다. 조산화아연 중에는, 아연성분 외에도 다양한 기타의 성분원소들(Pb, Cd, Sn, In, Fe, Cl, F 등)이 산화물, 염화물, 알칼리 화합물 등의 형태로 함께 혼재되어 있다. 그러므로 조산화아연을 건식 또는 습식아연제련용 원료로서 그대로 사용하게 되면 조산화아연에 함유된 이들 불순물 성분들이 미치는 악영향으로 인하여, 아연제련과정에서 많은 문제점들이 발생하므로. 따라서 이들 불순물 성분원소들을 가능하면 모두 제거하기 위한 건식 또는 습식정제공정이 추가로 필요하다. 따라서 본 연구에서는 조산화아연의 건식휘발 정제공정에서 발생되어 백필터에 포집된 아연(Zn) 및 납(Pb)을 함유한 2차분진(2nd Dust)으로부터 아연(Zn)과 납(Pb)을 효율적으로 분리하고, 더욱 부가가치를 높이기 위하여 Zn-cementation법으로 이들 성분원소들을 금속탄산염의 형태로 분리회수할 수 있는 공정기술에 대하여 기초적인 연구를 수행하였다.