• Title/Summary/Keyword: 습곡구조

Search Result 121, Processing Time 0.027 seconds

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

Geology and Stromatolite Fossil Localities of Socheong Island, Korea: An Introductory Review (소청도의 지질과 스트로마톨라이트 화석 산지)

  • Kim, Jeong-Yul;Han, Sung-Hee
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.107-107
    • /
    • 2010
  • Geology and stromatolite fossil localities of Socheong Island are reviewed on the basis of previous studies and recent field survey. A new fossil locality of stromatolites which are very well preserved is recognized in Bunam area, northeast of Socheong Island. An outcrop composed of sandstone and shale alternations which exhibit well-developed laminations and folds is also found in the east of the Socheong harbor, and it is regarded as one of the symbolic features of the geology in Socheong Island. Stromatolite fossil localities of Socheong Island contains diverse and well-preserved Late Proterozoic stromatolites which are correlated with those from the Mukchon and Myoraksan series of the Sangwon System and diverse sedimentary structures such as ripple marks, desiccation cracks, and raindrop imprints. Stromatolites of Socheong Island, the oldest fossil Natural Monument of Korea, should be preserved at the national level, and continued intensive research must be conducted.

  • PDF

Late Neogene and Quaternary Vertical Motions in the Otway Coast, Southeast Australia (II): Epeirogenic Uplift Driven by Lithospheric Flexural Deformation (호주 남동부 Otway 해안의 후기 신제3기 및 제4기 융기 운동(II): 암석권 휨 현상에 의한 대륙 지각의 융기)

  • Shin, Jaeryul
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.534-543
    • /
    • 2012
  • The relationship between tectonic uplift and geophysical analysis of gravity anomalies and the in-situ stress fields in the Otway Ranges, SE Australia is addressed in this study to understand the nature and possible mechanism for the neotectonic movements. The uplift axis of the ranges is coincident with the regional Bouguer gravity highs whereas thick Tertiary sedimentary successions are highly correlated with the gravity lows along the basin rift geometry. This result suggests that the gravity highs are separated by the thick Tertiary sedimentary successions. Regional structural trends associated with faults and foldings of the deformed surfaces are consistent with the prevailing NW-SE $S_{Hmax}$ trend in this part of the continent. The anomalously positive correlation between topography and Bouguer gravity fields suggests possibly a lithospheric flexural deformation mode at a long wavelength (order of $10^2$ kms) in the region. It also suggests that the reactivation of pre-existing lithospheric structures driven by plate boundary forces plays a key role in this mode.

Exploration for the Carlin-type Gold Deposits and Its Potential to Korea (칼린형 금광상 탐사와 국내 적용성 연구)

  • Park Maeng-Eon;Sung Kyu-Youl;Baek Seung-Gyun;Kim Pil-Geun;Kang Heung-Suk;Moon Young-Hwan
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.421-434
    • /
    • 2005
  • Abstract Based onthe characteristics of Carlin-type gold deposit in Nevada district, a potential in Korea is evaluated to the Yemi area where is structurally controlled by folds and trust fault. The fault of high angles are combined with a more permeable rocks such as the Yemi breccia and laminated silty limestone. The pattern of enrichment factors for Tl, Sb, As, Ag, Pb, Zn, Cu, Mo and W of limestones in the southern area are geochemically similar with those reported from the Carlin-type Bold deposit. Moreover, the oxygen and carbon isotopes show a hydrothermal alteration is widely developed in this area. According to the result of geophysical interpretation, stable isotope, alteration mineralogy, geochemical study, and geological structure, this mineralized zone may be extended to the M direction, so a detailed systematic exploration is required to identify this alteration zone.

Analysis of Geological Factors for Risk Assessment in Deep Rock Excavation in South Korea (한국의 대심도 암반 굴착 위험도 산정을 위한 인자 분석)

  • Ihm, Myeong Hyeok;Lee, Hana
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.211-220
    • /
    • 2021
  • Tunnel collapse often occurs during deep underground tunneling (> 40 m depth) in South Korea. Natural cavities as well as water supply pipes, sewer pipes, electric power cables, artificial cavities created by subway construction are complexly distributed in the artificial ground in the shallow depths of the urban area. For deep tunnel excavation, it is necessary to understand the properties of the ground which is characterized by porous elements and various geological structures, and their influence on the stability of the ground. This study analyzed geological factors for risk assessment in deep excavation in South Korea based on domestic and overseas case study. As a result, a total of 7 categories and 38 factors were derived. Factors with high weights were fault and fault clay, differential stress, rock type, groundwater and mud inrush, uniaxial compressive strength, cross-sectional area of tunnel, overburden thickness, karst and valley terrain, fold, limestone alternation, fluctuation of groundwater table, tunnel depth, dyke, RQD, joint characteristics, anisotropy, rockburst and so forth.

Stratigraphy and Provenance of Non-marine Sediments in the Tertiary Cheju Basin (제주분지 제삼기 육성층의 층서 및 퇴적물 기원)

  • Kwon Young-In;Park Kwan-Soon;Yu Kang-Min;Son Jin-Dam
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.1-15
    • /
    • 1995
  • Seismic reflection profiles and exploratory drilling well samples from the southern marginal-continental shelf basin of Korea delineate that the Tertiary sedimentary sequences can be grouped into five sequences (Sequence A, Sequence B, Sequence C, Sequence D and Sequence E, in descending order). Paleontologic data, K-Ar age datings, correlation with tuff layers and sequence stratigraphic analysis reveal that the sequences A, B, C, D and E can be considered as the deposits of Holocene $\~$ Pleistocene, Pliocene, Late Miocene, Early $\~$ Middle Miocene and Oligocene, respectively. The sequence stratigraphic and structural analyses suggest that the southern part of the Cheju Basin had experienced severe folding and faulting. NE-SW trending strike-slip movement is responsible for the deformation. The sinistral movement of strike-slip fault ceased before the deposition of Sequence B. Age dating and rare-earth elements analysis of volvanic rocks reveal+ that the Sequence D was deposited during the Early $\~$ Middle Miocene and the Sequence I was deposited earlier than the deposition of the Green Tuff Formation. Sedimentary petrological studies indicate that sediments of the Sequence I came from the continental block provenance. After the deposition of the Sequence E, uplift of the source area resulted in increase of sediment supply, subsidence and volcanic activities. The Sequence D show these factors and the sediments of the Sequence D are considered to be transported from the recycled orogenic belt.

  • PDF

Deformation of Moho in the Southern Part of the Korean Peninsula (한반도 남부 모호면의 변형 구조)

  • Shin, Young-Hong;Park, Jong-Uk;Park, Pil-Ho
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.620-642
    • /
    • 2006
  • The Moho structure and its deformation in the southern part of the Korean Peninsula were estimated using gravity and topography data. Gravity signals from the upper and lower crust were separated using a filter that was computed from isostacy and elastic thickness. The result of this study shows three characteristic features of the Moho deformation. First, the Moho folding structure is parallel to SKTL (the South Korean Tectonic Line), which indicates positive association with the collision of the Yeongnam and Gyeonggi Massifs and repeated compression afterwards. In contrast, noticeable deformation of the Moho was not observed along the Imjingang Belt, which is interpreted as another continental collisional belt in the Korean Peninsula. Second, the Moho beneath the Gyeongsang Basin has remarkably risen; this seems to be the result from both the collisional compression and buoyancy caused by magmatic underplating. Third, the Moho deformation is shallowest in the east of the Taebaek Mountains and deepens toward the west, consistent with the topographic characteristic of the Korean Peninsula of "high east and low west". It can be interpreted as the results of the opening of the East Sea and Ulleung Basin. A tectonic explanation for this could be the ascent of the mantle induced by continental rifting and horizontal extension at the early stage of the opening of the East Sea. The Moho deformation model computed in this study correlates well with the earthquake distribution and crustal movement measured by GPS. We suggest that the compression along the SKTL is still exerted, consequently, the Moho deformation is active, although it may be weak.

A Report on Gneiss Dome in the Hongseong Area, Southwestern Margin of the Gyeonggi Massif (경기육괴 남서 연변부 홍성지역에 발달하는 편마암 돔에 대한 보고)

  • Park, Seung-Ik;Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.315-323
    • /
    • 2016
  • This study reports a gneiss dome in the Hongseong area, southwestern margin of the Gyeonggi massif. This gneiss dome, named here as 'Oseosan dome' because it is located around the Oseosan, the highest peak along the western coastal area, is composed mainly of the Neoproterozoic to Paleozoic ortho- and paragneiss, mafic metavolcanic rock, and metadolerite. Migmatization affected these rock units, in which leucocratic(granitic) materials derived from anatexis frequently occur as patch and vein parallel to or cutting through internal foliation. The Oseosan dome shows overall concentric geometry and outward-dipping internal foliation, but also partly complicatedly changeable or inward-dipping foliation. Taking available petrological and geochronological data into account, the Oseosan dome is interpreted to be exhumed quickly into the upper crustal level during the Late Triassic, accompanied in part with anatexis and granite intrusion. In addition, extensional shear zone intruded by the Late Triassic synkinematic granite and sedimentary basin have been reported around the Oseosan dome. These evidences possibly suggest that the Oseosan dome formed in closely associated with the Late Triassic extensional movement and diapiric flow. Alternatively, 1) thrust- or reverse fault-related doming or 2) interference between independent folds during structural inversion of the Late Traissic to Middle Jurassic sedimentary basin can be also considered as dome-forming process. However, considering the northern limb of the Oseosan dome, cutting by the Late Traissic granite, and the southern limb, cutting by contractional fault reactivated after the Middle Jurassic, it is likely that the domal structure formed during or prior to the Late Triassic.

Analysis of Some Korean Terminologies on the Structures of Vascular Tissues in Plant Morphology (대학의 식물형태학 분야에서 사용하는 유관속조직의 구조에 관한 용어의 분석)

  • Lee, Kyu-Bae
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.9
    • /
    • pp.919-929
    • /
    • 2007
  • Some Korean terminologies related to the structures of vascular tissues in plant morphology, written differently depending upon textbooks and dictionaries, were analysed to propose properly expressed Korean terminologies. A total of 14 university textbooks such as general biology, plant biology, and plant morphology were selected and investigated. The terminologies on the xylem structures, i.e., apotracheal parenchyma, paratracheal parenchyma, tylose, and tangential (longitudinal) section; and on the pit structures i.e., simple pit, bordered pit, aspirated bordered pit, and pit aperture; and on the stelar structures, i.e., haplostele, actinostele, plectostele, and solenostele were examined. The definition and etymology of the terminologies were traced in 4 textbooks of plant anatomy and 2 dictionaries of biology and botany written in English. And then reasonably expressed Korean terminologies, mostly written in Chinese characters, were suggested. The terminologies were compared with those that appeared in the Iwanami dictionary of biology published in Japan. It was expected that the results would contribute to promote mutual understanding between teachers and students in learning plant biology.

Electrical Anisotropy of the Okchon Belt Inferred from Magnetotelluric Data (자기지전류 탐사 자료에 나타나는 옥천대의 전기적 이방성 구조)

  • Lee, Choon-Ki;Lee, Heui-Soon;Kwon, Byung-Doo;Cho, In-Ky;Oh, Seok-Hoon;Song, Yoon-Ho;Lee, Tae-Jong
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.227-239
    • /
    • 2007
  • The MT data at the Okchon Belt show peculiar phase responses exceeding $90^{\circ}$. A reasonable explanation is that those responses are due to an electrical anisotropy structure which is composed of a narrow anisotropic block and an anisotropic layer. Considering the dominant anisotropic strikes of the block (NE-trend) and the layer (NW-trend) inferred from the MT data, if existing, the electrical anisotropy in the Okchon Belt was probably produced by the deformations in the pre-Jurassic period, since the NE-trending shearing or thrusting should create alternating bands of metamorphic rocks and fractures with NE-trending. Correlation of the structural strike of 2-D block with the latest EW-trending deformation events demonstrates that the geometrical structure of the anisotropic block was formed by the latest Daebo and Bulgugsa orogeny.