• Title/Summary/Keyword: 슬로싱 문제

Search Result 19, Processing Time 0.022 seconds

Measuring Technique for Sloshing Phenomenon of vibrated liquid Storage Tank (가진을 받는 액체 저장탱크 내의 슬로싱 측정 기법 연구)

  • 윤성호;박기진;권호용
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.80-81
    • /
    • 2002
  • 비행체의 액체 저장탱크에서의 슬로싱 현상은 비행체의 조정 안정성 상실은 물론 구조적인 파손이 발생하여 인명 및 재정 손실이 초래 될 수 있다. 또한 최근 대형 선박에서의 액체 저장탱크에서도 슬로싱 문제는 주요한 관심사로 되어 있다. 선진기술국에서는 이러한 슬로싱 문제를 해결하기 위해 많은 관심을 쏟아 왔으나 국내에서는 체계적인 연구가 미흡한 실정이다.

  • PDF

Numerical Analysis of Three-dimensional Sloshing Flow Using Least-square and Level-set Method (최소자승법과 Level-set 방법을 적용한 3차원 슬로싱 유동의 수치해석)

  • Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.759-765
    • /
    • 2017
  • In this study, a three-dimensional least-square, level-set-based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The code was validated by solving some benchmark problems. The proposed method was found to provide improved results against other existing methods, by using a coarser mesh. The results of the numerical experiments conducted during the course of this study showed that the proposed method was both robust and accurate for the simulation of three-dimensional sloshing problems. Using a substantially coarse grid, historical results of the dynamic pressure at a selected position corresponded with existing experimental data. The pressure history with a finer grid was similar to that of a coarse grid; however, a fine grid provided higher peak pressures. The present method could be extended to the analysis of a sloshing problem in a complex geometrical configuration using unstructured meshes owing to the features of FEM.

Simulation of Membrane Sloshing Tank by Using MPS (입자법을 이용한 멤브레인 타입 슬로싱 시뮬레이션)

  • Kim, Kyung Sung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.117-122
    • /
    • 2019
  • In the field of fluid dynamics, the sloshing effects are most common and significant problem. It is usually appeared in the tank filled with fluid which is on the main structure, thus, sloshing effects and its impact load may affect to entire system. For the sloshing effects analysis, impact loads due to tank motion is generally investigated theocratically, experimentally and numerically. The difficulty of sloshing phenomenon is non-linearity induced by large deformation at the free-surface. In this regard, it is well known issue that the repeatability on the sloshing problems is very low. In this study, moving particle semi-implicit method was employed to simulate sloshing problem and then the results were compared with corresponding experiments captured by high accuracy high speed camera. The results from numerical simulation was compared to experimental results.

A Study on Application of PIV to Sloshing Phenomenon inside Rectangular Tank (장방형탱크 내부 슬로싱 현상에 관한 PIV적용에 관한 연구)

  • Kim, K.S.;Choi, J.Y.;Cho, D.H.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.85-86
    • /
    • 2009
  • The sloshing phenomenon can be defined as the nonlinear movement of the free-surface of liquids inside tanks. It generates dynamic loads on the tank structure and thus becomes a problem of relative importance in the design of marine structures. The present study describes a experiment of the sloshing of flows with free-surface which contained in a rectangular tank moving in pitching motion.

  • PDF

The Study of 1-Way FSI for Strength Assessment of LNG Cargo Containment System (1-way FSI 기법에 의한 LNG 운반선 화물창의 강도평가에 관한 연구)

  • Lee, Sung-Je;Yang, Yong-Sik;Kim, Sung-Chan;Lee, Jang-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.527-530
    • /
    • 2011
  • 전 세계적인 LNG 수요 증가에 따라 LNG 운반선의 대형화 및 극한 환경의 항로 선택이 불가피해지고 있다. 이러한 상황에서 LNG의 슬로싱 현상에 따른 화물창의 구조적 안정성 여부가 큰 이슈거리로 떠오르고 있다. 슬로싱 현상에 의한 구조 안전성을 평가하는 가장 이상적인 방법은 유체 영역과 탱크의 복합적인 상호 작용을 완벽하게 구현하는 것이다. 하지만 과도한 계산 시간과 결과의 정확성이 확보되지 못한 상황에서 LNG 운반선 화물창의 안전성 평가에 적용하기에는 문제가 있다. 많은 연구 단체에서는 불규칙적인 슬로싱 압력 신호를 삼각파 등의 형태로 이상화하여 구조해석에 적용하고 있지만 이 또한 유체의 압축성 및 비선형성을 고려하는데 한계를 드러내고 있다. 본 연구에서는 슬로싱 하중을 받는 구조의 안전성을 평가함에 있어 쌍방향(2-way) FSI(Fluid-Structure Interaction)의 과도한 해석 시간 및 수렴의 어려움을 보안하고 유체의 비선형성을 고려할 수 있는 단 방향(1-way) FSI 기법을 이용하는 절차를 제안하고자 한다.

  • PDF

Study of Sloshing Flow in a Rectangular Tank (사각용기의 슬로싱 유동에 관한 연구)

  • Ji, Young-Moo;Shin, Young-Seop;Park, Jun-Sang;Hyun, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.617-624
    • /
    • 2011
  • The two-dimensional sloshing problem in a rigid rectangular tank with a free surface is considered. The flow is generated by a container in harmonic motion in time along the horizontal axis, i.e., a container excited by u=Asin($2{\pi}ft$) where u denotes the container velocity imposed externally, A is the amplitude of the oscillation velocity, and f is the frequency of oscillation. Experimental apparatus is arranged to investigate the large-amplitude sloshing flows in off-resonant conditions, where the large amplitude means that A~O(1), and the distance, S, is comparable to the breadth, L, of the container, i.e., L/S~O(1). Comprehensive particle image velocimetry (PIV) data are obtained, which show that the flow physics of the nonlinear off-resonant sloshing problem can be characterized into three peculiar free surface motions: standing-wave motions similar to those of linear sloshing, a run-up phenomenon along the vertical sidewall at the moment of turn-over of the container, and gradually propagating bore motion from the sidewall to the interior fluid region, like a hydraulic jump.

Dynamic Response Analysis of Nonlinear Sloshing in Two Dimensional Rectangular Tank using Finite Element Method (유한요소법을 이용한 2차원 사각탱크내 비선형 슬로싱 동응답 해석)

  • 조진래;이홍우;하세윤;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • This paper deals with the FEM analysis of nonlinear sloshing of incompressible, invicid and irrotational flow in two dimensional rectangular tank. We use laplace equation based on potential theory as governing equation. For large amplitude sloshing motion, kinematic and dynamic free surface conditions derived from Bernoulli equation are applied. This problem is solved by FEM using 9-node elements. For the time integration and accurate velocity calculation, we introduce predictor-corrector time marching scheme and least square method. Also, numerical stability in tracking of free surface is obtained by direct calculation of free surface location to time variation. Numerical results of sloshing induced by harmonic excitations, while comparing with those of linear theory and references, prove the accuracy and stability. After verification of our program, we analyze sloshing response characteristics to the fluid height and the excitation amplitude.

Interactions of Faraday Wave and Sloshing Wave Generated in the Strong Nonlinear Sloshing Problem of Rectangular Open Tank (사각용기의 강한 비선형 슬로싱 문제에서 발생하는 페러데이파와 슬로싱파의 상호작용)

  • Park, Jun Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.14-22
    • /
    • 2020
  • An experiment, in the cases that satisfies deep water condition, has been performed to observe the strongly nonlinear sloshing flow in a rectangular tank. A variety of parametric study on oscillating frequency and amplitude was conducted and we found that two types of wave motions, sloshing wave and Faraday wave, could be persisting simultaneously even in horizontal sloshing problem. Moreover, it is observed both of symmetric and skewed symmetric Faraday wave exist. A comprehensive explanation is given to the generation mechanism of those waves and how to interact among them.

Finite Element Analysis of Sloshing Eigen Behavior in Horizontal Baffled Fuel Tank (수평으로 놓인 배플형 연료탱크의 슬로싱 고유거동에 관한 유한요소 해석)

  • 조진래;하세윤;이홍우;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.619-628
    • /
    • 2002
  • This paper deals with the FE analysis for the free vibration of sloshing in horizontal cylindrical tank with baffles. We use Laplace equation based on potential theory as governing equation. This problem is solved by FEM using lineal isoparametric elements. We assume that the tank as well as baffles is rigid body and by separating nodes into two at the baffle location, baffle effect is obtained by separating nodes into two at the baffle location. For the calculation of natural frequencies and mode shapes, we introduce Lanczos transformation and Jacobi iteration methods. Numerical results of the first longitudinal and transverse modes, while comparing with literature cited, are very good. In order for the baffle effects on the free vibration of sloshing, various combinations of baffle parameters, which are location, inner diameter and number, are examined.