• Title/Summary/Keyword: 슬럼프 저하

Search Result 73, Processing Time 0.031 seconds

Effects of Aggregate Size and Steel Fiber Volume Fraction on Compressive Behaviors of High-Strength Concrete (골재크기 및 섬유혼입률에 따른 강섬유 보강 고강도 콘크리트의 압축거동)

  • Ahn, Kyung-Lim;Jang, Seok-Joon;Jang, Sang-Hyeok;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.229-236
    • /
    • 2015
  • This paper describes the effect of aggregate size on compressive behavior of high-strength steel fiber reinforced concrete. The Specified compression strength is 60 MPa and the range of fiber volume fraction is 0~2%. The main variable is the aggregate size, which was used for the aggregate size of 8 and 20 mm. So, ten concrete mixtures were prepared and tested to evaluate the fresh and hardened properties of SFRC at curing ages (7, 14, 28, 56 and 91 days), respectively. Items estimated in this study are the fresh properties (air contents, slump), hardened properties (compressive strength, modulus of elasticity, post-peak response and compressive toughness). As a result, the aggregate size has little effect on the compressive strength and modulus of elasticity. On the other hand, the ductile behavior was shown after post peak and the compressive toughness was increasing as decreasing the aggregate size. These effects are clearly represented in the fiber volume fraction 2%, which are the point appeared fiber ball. It is considered that the decreasing the aggregate size has effect on the fiber dispersibility.

The Influence of Fine Particles under 0.08 mm Contained in Aggregate on the Characteristics of Concrete (골재 중 0.08 mm 이하 미립분의 종류가 콘크리트의 특성에 미치는 영향)

  • Song, Jin-Woo;Choi, Jae-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.347-354
    • /
    • 2013
  • Recently, crushed fine aggregates are being widely used due to the shortage of natural sand. In Korea, the amount of fine particles under 0.08 mm contained in crushed fine aggregates is restricted to be less than 7%, which is similar to the regulations of ASTM but is still very strict compared to the regulations of the other nations. In addition, the crushed aggregates already have in them about 20% of fine particles under 0.08 mm which occurs while they are crushed. The fine particles are not easy to wash out, and also to maximize the use of resources it is deemed necessary to review the possibility of enhancing the limit of the amount of fine particles. Therefore, this study conducted experiments to analyze the characteristics of fine particles under 0.08mm and their influence on the properties of concrete. Experiments using silt and cohesive soil were also done for comparison. In the experiments on fine particles, the methylene blue value was more in the soil dust contained in silt and cohesive soil than in the stone powder contained in crushed fine aggregates. Also, the methylene blue value had a close correlation with packing density and liquid & plastic limit. In the experiments done with concrete, the quantity of high range water reducing agent demanded to obtain the same slump increased as the fine particle substitution rate heightened. However, in the experiment which used stone powder testing the compressive strength and tensile strength of concrete in the same water-cement ratio, there was little change in strength with less than 20% addition of fine particles among the fine aggregates, and no meaningful difference in the amount of drying shrinkage of concrete.

An Experimental Study on Pumpability Characteristics of High Strength Concrete Mixed Polymix (폴리믹스 혼입 고강도 콘크리트의 펌프압송 성상에 관한 실험적 연구)

  • Lee, Joo-Ho;Moon, Hyung-Jae;Kim, Jeong-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.509-516
    • /
    • 2012
  • The aims of this research is to develop a fire resistant admixture to enhance high-pressured pumping of high-strength concrete (HSC) with a compressive strength of 60~80 MPa. Generally, the efficiency of HSC high-pressured pumping is dramatically reduced due to entanglement of short fibers added to prevent fire spalling. Therefore, the fire resistant admixture that can facilitate pumping of fire resistant HSC is urgently needed presently. The fire resistant HSC mix is comprised of Polypropylene fiber, Nylon fiber and Polymer powder. The test results showed that the slump-flow was improved by approximately 70% of the HSC without fire resistant admixture. However, the air void content was increased slightly due to the addition. The standard design compressive strength at 28-days was satisfied, while its flexural strength was similar to the concrete without the admixture. Since the flexural strength was 12~15% of its compressive strength, the general trend of flexural to compressive strength ratio in normal concrete was maintained. Even though its elastic modulus was decreased by adding the admixture, the study results showed that the concrete can be used for construction since all of the test results exceeded the code requirements.

Fine Aggregates Size Effect on Rheological Behavior of Mortar (잔골재 입자 크기에 따른 모르타르의 레올로지 거동 특성)

  • Lee, Jin Hyun;Kim, Jae Hong;Kim, Myeong Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5636-5645
    • /
    • 2015
  • Physical characteristics of aggregates affect the workability and strength of mortar and concrete, which include their fineness ratio, particle size distribution and water absorption. The workability of construction materials decreases if the incorporated fine aggregates show improper size distribution of their particles. This study shows the particle size effect on the rheological behavior of mortar and provides basic information for evaluating its workability. A mini-slump flow test was adopted to evaluate the workability of mortar. In addition, its plastic viscosity and yield stress were measured using a rheometer for building materials. The sand samples were prepared by sieving river sand and sorting out with their particle sizes. As a result, it was observed that the fines less than 0.7 mm increases the yield stress and plastic viscosity of the mortar samples. If the fines are less than 0.34 mm, the water absorption of the fines dominates change on the workability.

An Experimental Study on the Drying Shrinkage of Concrete Using High-Quality Recycled Sand (고품질 순환잔골재를 사용한 콘크리트의 건조수축 특성에 관한 실험적 연구)

  • Song, Ha-Young;Lee, Sang-Soo;Lee, Do-Heun;Lee, Jong-Gou;Kim, Jae-Hwan;Lim, Hyon-Ung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.136-143
    • /
    • 2006
  • In this study, recently it is urgently required that demolition waste concrete has to be recycled on the construction because urban development is accelerated and redevelopment project is rapidly expanded, production quantity of construction and demolition waste concrete is being increased. As a results of drying shrinkage test under restrained and unrestrained condition, although workability and mechanical properites of concrete using HQRS were similar to that of concrete using natural sand, there were a great difference in deformation characteristic of dry shrinkage according to replacement ratio of HQRS. And, it makes sure that use of HQRS instead of partial nature sand was effective because drying shrinkage of concrete using 30 volume percentage of HQRS was smaller than that using only natural sand. Therefore, it is the objective of this study to provide the fundamental data about the re-application as an analysis of the drying shrinkage characteristics of concrete using HQRS and it is able to creta a high value-added by using HQRS.

  • PDF

A Fluidity Experiment of Pre-Mix Cement for Dispersibility Improvement of Mineral Admixture (광물질 혼화재의 분산성 향상을 위한 프리믹스 시멘트의 유동성 실험)

  • Han, Cheon-Goo;Lee, Hai-Ill;Noh, Sang-Kyun;Kim, Ki-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.90-96
    • /
    • 2009
  • The high rising building construction makes increasing the requirement of high strength concrete. Especially, the workability analysis is related with dispersion of admixture such as SF for improving strength and FA, BS for reducing construction cost and improving durability of Ultra High Strength Concrete which has over 100 MPa of compressive strength is very important. Precisely, decreases dispersion because of lumping situation of each admixture and it causes the workability of admixture is decreased. Therefore, the workability of cement paste is tested for analyze effects of pre-mixed cement for solving those problems with it to this research. The summary of the results are like below. First of all, OBS is increasing workability more than OFS. This result causes that the glassy surface of BS in the OBS is increasing workability and the absorption of admixture of FA in the OFS is decreasing workability. In the case of mixing methods, pre-mixing method is increasing workability more than normal one. This result shows that the normal mixing method is bad dispersion of binders. The other side, the pre-mixing method is good. Furthermore, depending on the mixing time, according to the increasing mixing time such as 30, 60, and 120 seconds, the dispersion of binders and workability turns better.

  • PDF

Application of Alkali-Activated Ternary Blended Cement in Manufacture of Ready-Mixed Concrete (알칼리 활성화 3성분계 혼합시멘트의 레미콘 적용 시험)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Cement industry is typical carbon-emission industry. If the industrial by-products(granulated blast-furnace slag (GGBFS), fly ash, etc.) are used a large amount, it might be able to reduce cement consumption and mitigate carbon emissions. In this case, however, decrease of early strength is relatively large. Therefore, there is a limitation in increase of the amount of substitute. Considering these circumstances, it would be a good solution to reduce carbon emissions in cement industry to improve the performances of mixed cement through proper alkali-activation in Portland blended cement using GGBFS or fly ash. Therefore, this study prepared concrete in ready-mixed concrete manufacturing facilities with an addition of a binder which used 2.0% modified alkali sulfate activator after mixing Portland cement, GGBFS and fly ash in the ratio of 4:4:2 and assessed its basic properties. The results found the followings: The use of modified alkali-sulfate activator slightly reduced slump and shortened setting time. As a result, bleeding capacity decreased while early strength improved. In addition, there is no big difference in carbonation resistance. It appears that there should be continued experiments and analyses on the related long-term aged specimens.

Chloride Diffusivity of Concrete using Recycled Aggregate by Strength Levels (강도수준별 순환골재 콘크리트의 염화물 확산특성)

  • Lee, Jun;Lee, Bong-Chun;Cho, Young-Keun;Jung, Sang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.102-109
    • /
    • 2016
  • This paper presents mechanical properties and chloride diffusivity of the recycled aggregate concretes(RAC) in which natural coarse aggregate was replaced by recycled coarse aggregate(RCA) by compressive strength levels(20, 35, 50 MPa). A total of 9 RAC were produced and classified into three series, each of which included three mixes designed with three compressive strength levels of 20 MPa, 35 MPa and 50 MPa and three RCA replacement ratios of 0, 50 and 100%. Engineering properties of RAC were tested for slump test, air content, compressive strength, chloride penetration depth and chloride diffusion coefficient. The test results indicated that the workability of RAC could be improved or same by RCA replacement ratios, when compared with that containing no RCA. This is probably because of the RCA shape improving the workability of RAC. Also, the test results showed that the compressive strength was decreased by 9~10% as the RCA replacement ratios increase. Furthermore, the result indicated that the measured chloride diffusion coefficient increases by 144% with the increase of the RCA replacement. In the case of the concrete having low level compressive strength, the increase of chloride diffusion coefficient tends to be higher when using the RCA. However, the trend of chloride diffusion coefficient in high level compressive strength concrete is similar to that obtained in general concrete. This is because that the effect of the RCA replacement could be a decrease with increase of compressive strength. Therefore, an advance on the admixture application and mix ratio control are required to improve the chloride resistivity when using the recycled aggregate in large scale.

Experimental Study on the Properties of Surface Treatment Fly Ash Using Arc Discharge (아크방전을 이용한 표면개질 플라이애시의 특성에 관한 실험적 연구)

  • Kim, Sun-A;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.357-364
    • /
    • 2018
  • Fly ash is a material used as a concrete admixture. When fly ash is used for concrete manufacturing, it is expected to improve the performance such as reduction of cement usage and increase of chemical resistance. However, fly ash have some problems such as unburned carbon content and amorphous film on the surface of fly ash particles. When concrete is manufactured using fly ash containing a large amount of unburned carbon, there is a problem that the slump is lowered due to adsorption of AE agent. In addition, the amorphous film on the surface of the particles prevents the reactive substances from leaching out of the fly ash. Therefore, a method of surface treatment of fly ash using plasma has been studied to remove such unburned carbon and amorphous films. However, plasma has the problem that $O_3$ is generated when $O_2$ is used as an active gas. $O_3$ is a harmful substance and adversely affects the health of the experimenter. In this study, the surface of fly ash was treatment by arc discharge. Experimental results show that the unburned carbon is removed when the surface of fly ash is treatment by arc discharge and the amorphous film was broken and the reactivity was improved. Therefore, it is considered that arc discharge can treatment the surface of fly ash and improve the quality of fly ash.

Evaluation of Compressive Strength and Freeze-thaw Resistance Properties of Concrete using Superabsorbent Polymer (고 흡수성 폴리머를 혼입한 콘크리트의 압축 강도 및 동결융해 저항성 평가)

  • Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.86-94
    • /
    • 2020
  • When the Superabsorbent Polymer (SAP) is added into concrete, the slump decreases rapidly, deteriorating the workability, the internal curing effect can be obtained through the water absorption and discharge process, and the internal voids of the concrete are increased. In this study, the effects of internal curing and voids were evaluated by evaluating the compressive strength, freeze-thaw resistance, and chloride penetration resistance of SAP-adding concrete that secured workability using a water reducing agent. Also, the internal curing effect of SAP was evaluated by dividing the curing conditions of concrete into water curing and sealed curing. From the result, as the SAP adding ratio increased, the amount of water reducing agent increased, and as for the compressive strength, the SAP adding ratio of 1.5% showed the greatest compressive strength. In particular, in the case of sealed curing showed higher compressive strength than the water curing. It is considered that the compressive strength increased due to the reduction of the effective water-cement ratio and the internal curing effect. Adding 1.0~1.5% of SAP improved the freeze-thaw resistance similar to the case of adding the AE agent, and the addition of more than 1.0% of SAP improved the chloride penetration resistance. The optimal adding ratio of SAP is 1.5%, and the adding ratio of 2.0% or more adversely affects the compressive strength and freeze-thaw resistance.