• Title/Summary/Keyword: 슬래브 두께

Search Result 221, Processing Time 0.035 seconds

Slab Construction Load Distribution in a Multistory-shored RC Structure System with Different Slab Thickness (슬래브 두께가 다른 다층지지 RC 구조 시스템에서의 슬래브 시공 하중 분포)

  • Sang-Min Han;Jae-Yo Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.17-26
    • /
    • 2024
  • In recent times, accidents involving structural elements, formwork, and shore have been persistently occurring during concrete pouring, especially in multi-story reinforced concrete (RC) structures. In previous studies, research on construction load analysis was mainly conducted for cases where the thickness of all slabs is constant. However, when the thickness of some slabs is different, the variation in the stiffness of slab cross-sections can lead to different distributions of construction loads, necessitating further investigation. In this study, the slab thickness was set as a variable, and the analysis of the distribution of construction loads was conducted, taking into account the influence of changes in slab thickness on the concrete stiffness and structure. It was confirmed that not only the concrete material stiffness but also the slab cross-section stiffness should be considered in the estimation of construction loads when the slab thickness changes. As the slab thickness increases, the maximum construction load and maximum damage parameter on the layer with increased thickness significantly increase, and it was observed that a thicker slab results in a higher proportion of construction load.

Investigation of Slab Thickness Influence on Prestressing Design of Post-Tensioned Concrete Pavement (포스트텐션 콘크리트 포장 긴장 설계에 대한 슬래브 두께의 영향 분석)

  • Yun, Dong-Ju;Kim, Seong-Min;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.107-115
    • /
    • 2009
  • This study was conducted to investigate the effect of the slab thickness on the tensioning design and to determine the optimal slab thickness of the post-tensioned concrete pavement (PTCP). The tensile stresses due to the vehicle and environmental loads were obtained using a finite element analysis model and the tensioning stress was calculated employing an allowable flexural strength. The environmental loads of both the constant temperature gradient and the constant temperature difference between top and bottom of the slab were considered. The tensioning designs for various slab thicknesses were performed considering prestressing losses. The comparison results showed that generally as the thickness increased, the number of tendons became larger. Consequently, the design was not economical for a thicker slab thickness. Even though the number of tendons became smaller with an increase in the thickness under the small environmental load, a thicker PTCP slab was not economical because of a higher cost of concrete than that of steel. Therefore, the slab thickness should be kept in minimum within the construction available thicknesses.

  • PDF

Experimental Study on Fire Resistance Performance of Legal Slab under Standard Fire with Loading condition (표준화재 재하조건에서 법정슬래브의 내화성능에 관한 실험적 연구)

  • Cho, Bum-Yean;Yeo, In-Hwan;Kim, Heung-Youl;Min, Byung-Yeol;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.115-118
    • /
    • 2011
  • 본 연구에서는 현재 법정내화구조로 규정되어 있는 철근콘크리트(RC: Reinforced concrete)조 및 철골철망모르타르(SWM: Steel & Wire Mortar)조 슬래브에 대하여 재하조건에서 구조별 내화성능을 검토하고, 철골철망모르타르조 슬래브에 대해서는 피복두께별 내화성능을 검토하고자 표준화재조건에서 내화실험을 실시하였다. 실험결과 동일피복 두께일 경우 철근콘크리트조 슬래브가 내화성능이 우수한 것으로 나타났으며, 철골철망 모르타르조 슬래브의 경우 피복두께가 10mm 증가 시 7%의 내화성능이 향상되는 것으로 나타났다. 가열 이면온도는 슬래브의 두께가 늘어날수록 낮은 것으로 나타났다.

  • PDF

Two-way Shear Strength Evaluation of Transfer Slab-Column Connections Through Nonlinear FE Analysis (비선형유한요소해석을 통한 전이슬래브-기둥 접합부의 2면 전단강도 평가)

  • Jeong, Seong-Hun;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.315-329
    • /
    • 2018
  • Recently, RC transfer slab systems have been used widely to construct high-rise wall-type apartments for securing parking space or public space. However, it is problem that the design method and structural performance evaluation method developed for thin RC flat slab are still used in the design of the transfer slab whose thickness is very thick and therefore structural behavior is expected to be different from RC flat slab. Thus, for the rational design of the transfer slab, the ultimate shear behavior of the RC transfer slab system is required to be analyzed properly. Accordingly, in the present study, the two-way shear behavior of the transfer slab was analyzed using nonlinear FEM according to various design parameters such as thickness of the transfer slab, strength of concrete, shear span ratio, and reinforcement ratio. In addition, the two-way shear strength evaluations of RC transfer slab by the existing evaluation methods were verified by comparing those with the results of nonlinear FEM analysis.

The Flexural Behavior including Ductility of Half Precast Concrete Slab with Welded Deformed Wire Fabric (용접철망을 사용한 반두께 P.C.슬래브의 휨 및 연성거동)

  • 이광수;최종수;조민형;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.153-160
    • /
    • 1994
  • Ten Half precast concrete slabs reinforced with welded deformed wire fabric were tested under two concentrated loads to investigate the flexural moment and ductile capacity. The test variables were the compressive strength of topping concrete, quantitative roughness, and reinforcernent ratio. The effects of each test variables were studied separately. Test results were as followings. The ultimate strength design method is applicable to predict flexural strength for Half P.C. concrete slab with welded deformed wire fabric and quantitative roughness. It is proper to consider 0.0035 strain ;is yielding stress of the welded deformed wire fabric. The ductility index of Half precast concrete slab with welded deformed wire fabric showed lower value. Therefore to enhance the ductility capacity the normal defomed bar should be used with the welded deformed wire fabric for the longitudinal reinforcement.

Two-way Shear Behavior Analysis of Transfer Slab-Column Connection with Reverse Drop Panel Through Nonlinear FE Analysis (역드랍 패널 적용 전이슬래브-기둥 접합부의 비선형 유한요소해석을 통한 2면 전단거동 분석)

  • Jeong, Seong-Hun;Kang, Su-Min;Kim, Seung-Il;Lee, Chang-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2020
  • Recently, the use of transfer slab system has increased greatly. However, several construction problems are being encountered owing to its excessive thickness. Therefore, in this study, a transfer slab system that uses a reverse drop panel, which can utilize the facility space of the pit floor by reducing the transfer slab thickness, was considered. To investigate the shear behavior of transfer slab system that uses the reverse drop panel, the two-way shear strength of transfer slab-column connection with the reverse drop panel was analyzed using nonlinear FE analysis. In addition, the two-way shear strength evaluations of transfer slab with the reverse drop panel conducted using the existing evaluation methods were verified by comparing the strengths predicted by those methods with the results of nonlinear FE analysis.

Determination of Equivalent Vehicle Load Factors for Flat Slab Parking Structures Using Artificial Neural Networks (인공 신경망을 이용한 플랫 슬래브 주차장 구조물의 등가차량하중계수)

  • 곽효경;송종영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.115-124
    • /
    • 2003
  • In this paper, the effects of vehicle loads on flat slab system are investigated on the basis of the previous studies for beam-gilder parking structural system. The influence surfaces of flat slab for a typical design section are constructed lot the purpose of obtaining maximum member forces under vehicle loads. In addition, the equivalent vehicle load factors for flat slab parking structures are suggested using artificial neural network. The network responses we compared with the results obtained by numerical analyses to verify the validation of Levenberg-Marquardt algorithm adopted as training method in this Paper. Many parameter studies for the flat slab structural system show dominant vehicle load effects at the center positive moments in both column and middle strips, like the beam-girder parking structural system.

Sensitivity Analysis of Load Trunsfer of Jointed Concrete Pavements Using 3-D Finite Element Model (3차원 유한요소 모형를 이용한 줄눈 콘크리트포장 하중전달의 민감도 분석)

  • Sun, Ren-Juan;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.145-157
    • /
    • 2008
  • Load transfer efficiency (LTE) reflects the structural performance of doweled and undoweled joints of Jointed Concrete Pavement (JCP). A 3-dimensional (3-D) model of JCP was built using ABAQUS software in this study. Three concrete slabs were placed on bonded sublayers composed of a base and subgrade. Spring elements were used to connect the adjacent slabs at joints. Different spring constants were input to the model to simulate different joint stiffness of the concrete pavement. The LTE of the joint increased with an increase of the spring constant. The effects of material properties and geometric shape on the behavior of JCP were analyzed using different elastic modulus and thickness of the slab and base in the modeling. The results showed the elastic modulus of the subgrade affected the behavior of the slab and LTE more than that of the base and the thickness of the slab and base. The effects of a negative temperature gradient on the behavior of the slab and LTE were more than that of positive and zero temperature gradients. Joints with low stiffness were more sensitive to the temperature gradient of the slab.

  • PDF

Evaluation of The Nonlinear Seismic Behavior of a Biaxial Hollow Slab (2방향 중공슬래브 구조시스템의 비선형 지진거동 평가)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Park, Hyun-Jae;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, there has been an increased interest in the noise isolation capacity of floor slabs, and thus an increase of slab thickness is required. In addition, long span floor systems are frequently used for efficient space use of building structures. In order to satisfy these requirements, a biaxial hollow slab system has been developed. To verify the structural capacity of a biaxial hollow slab system, safety verification against earthquake loads is essential. Therefore, the seismic behavior of a biaxial hollow slab system has been investigated using material nonlinear time history analyses. For efficient time history analyses, the equivalent plate element model previously proposed was used and the seismic capacity of the example structure having a biaxial hollow slab system has been evaluated using the nonlinear finite element model developed by the equivalent frame method. Based on analytical results, it has been shown that the seismic capacity of a biaxial hollow slab system is not worse than that of a flat plate slab system with the same thickness.

Habitability Evaluation of Two-way Void Slab for Vertical Vibration (이방향 중공슬래브의 연직진동에 관한 거주 성능 평가)

  • Jo, Seong-Woo;Choi, Sun-Young;Choi, Jong-Moon;Kim, Sang-Mo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.458-461
    • /
    • 2011
  • 이방향 중공슬래브 시스템의 구조특성 및 성능평가 연구의 일부로 실제 건축물에 적용된 이방향 중공슬래브의 연직진동을 측정 및 분석하였다. 캡슐형 경량체를 사용한 이방향 중공슬래브가 적용된 두 건축물에서 바닥 용도상 일상적인 진동발생원이라고 가정할 수 있는 75 kg 성인의 보행, 달리기, 제자리 점프에 대해 슬래브의 연직진동을 측정하였다. 두 대상 건축물은 각각 연구소와 교육시설 용도로 설계 및 건축되었다. 측정된 수직 가속도 데이터로 일본건축학회 환경기준에 (AIJES-2004) 근거하여 진동수 범위 3~30 Hz에 대해 1/3 옥타브 밴드 분석을 실시하였다. 이 분석을 바탕으로 AIJEES-2004에 제시한 기준에 따라 바닥의 연직진동에 대한 거주 성능을 평가한 결과, 측정한 세 건축물에 적용된 이방향 중공슬래브 모두 보행과 달리기에 대해서는 피진동자의 10% 미만이 인지, 제자리 점프에 대해서는 50~70% 미만이 인지할 수 있는 것으로 나타나, 이방향 중공슬래브가 바닥의 연직 진동에 대해 거주 성능이 양호함을 보여주었다.

  • PDF