• Title/Summary/Keyword: 슬래브교

Search Result 79, Processing Time 0.025 seconds

Study on the Reinforced Concrete Slab Bridges of North Korea (북한의 철근콘크리트 슬래브교에 관한 연구)

  • Han, Eui Seok;Lee, In Keun;Park, Sun Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.455-464
    • /
    • 2013
  • If North Korea continuously remains an isolated nation without social interaction with South Korea, the gaps in the theoretical and technological status in construction technology become greater between North and South Korea. Therefore if interactions between North and South Korea can be made, there will be significant improvement in infrastructure technological performance can be made(i.e., Reinforced Concrete bridges). This study was performed to compare and analyze data related to the design standards of North Korean RC bridges and to execute a structural analysis based on standard design specifications of RC slab bridges. Especially, basic study of analyzing the influences on design truck loads of North and South Korea was conducted for the purpose of predicting the performance of North Korean RC slab bridges and the safety levels of traveling vehicles in advance. It is expected that the results of this study can be used as fundamental data for the set-up of South-North RC bridge specification when South and North Korea enter a stage of cooperation and interaction between South and North Korea are actively pursued to prepare for reunification.

개구부가 있는 슬래브교의 휨 거동 사례 연구

  • 채원규;은충기;한석주;김광일;홍성욱;원일석
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.176-182
    • /
    • 2000
  • 철도교에서 철도역사의 경우 도로교와 달리 승객의 이동시 필요한 승강장이 존재하기 때문에 승강장의 통로를 위해 개구부가 존재할 수밖에 없다. 따라서 철도교의 철도역사에 대한 구조해석 시 슬래브에 위치한 개구부에 대한 고려가 필수적이다. 그러나 최근까지의 철도교의 철도역사에 대한 구조해석은 2차원 평면 해석에 의존하는 경우가 많아서 개구부에 대한 고려가 없거나 소홀했던 것이 사실이다.(중략)

  • PDF

Simplified Bending Moment Analysis in Slab Bridges supported by Column Type Piers (기둥으로 지지된 슬래브교(橋)의 모멘트 산정(算定)에 관한 연구(硏究))

  • Kim, Young Ihn;Lee, Chae Gyu;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.17-24
    • /
    • 1992
  • It would be much effective that single column type pier is used in concrete slab bridges rather than ${\Pi}$ or gravity type pire is used. To determine the longitudinal benging moment in concrete slab bridges supported by single column type piers, the concept of effective width is applied. By elastic plate theory cooperated with finite element method, the distribution of the longitudinal moment of the slab supported by single column type piers is studied. The main variables are span, width. thickness of the slab, and column section size. The analytical results obtained are summarized and analysed to evaluate the maximum longitudinal negative moment, then a simplified method for calculating the longitudinal moment is proposed.

  • PDF

An Experimental Study About a Net-Type External Prestress Strengthening Method for Slab Bridges (네트형 외부 긴장재에 의한 슬래브교 보강 실험)

  • Han, Man Yop;Kang, Tae Heon;Choi, Sok Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.136-149
    • /
    • 2011
  • Large portion of the domestic bridges are slab bridges reflecting the geographical characteristic of the country, where exists lots of inclines and small winding brooks. Many of the slab bridges are damaged and superannuated as they become obsolete. Deterioration is accelerated when the traffic density becomes large and heavy vehicles pass frequently. A strengthening method for deteriorated slab bridges was studied in this work. The examined net-type strengthening method uses both longitudinal and transverse prestressing for strengthening. In this way, the deflection at the center of the slab can be better controlled, and consequently, the slab is more efficiently strengthened. Three slab specimens were fabricated for the experimental test and subjected to three different loading conditions, and the load bearing capacities and deflections of slabs were examined. Flexural stiffness of slabs increased by 30.7~107.3%, and deflection of slabs decreased by 27.6~52.2% after net-type strengthening. The net-type prestressing is efficient to the strengthening for the center of a slab, and its efficiency is also valid under eccentric loadings. Since extra prestress forces can be added in the future, if necessary, the net-type strengthening system is advantagous for the maintenance and repair of slab bridges.

A Study on Crack Control of Early-aged Reinforced Concrete Rahmen Bridge (초기재령 철근큰크리트 라멘교의 균열제어에 관한 연구)

  • Jung Hee-Hyo;Lee Sung-Yeol;Kim Woo-Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.15-25
    • /
    • 2006
  • The researches on the early-aged concrete hydration process and the techniques for the early-aged concrete crack control mainly have been focused and developed on the massive concretes in both experimental and numerical studies. However, those researches for relatively thin members such as the upper slab of the reinforced concrete rahmen bridge have nearly been attempted. In this study, a designing technique for crack controlling in the thin members of the early-aged reinforced concrete rahmen bridges based on measured temperature history, strength revelation model and sinkage model is proposed. A method of calculating the reinforcing bar area for crack controlling is also proposed and it is found that the distributing bars under the design loads become the main reinforcing bars in the temperature stress analysis of the early-aged reinforced concrete rahmen bridges. It is shown that the proposed analysis technique is able to use the design of crack control for the early-aged reinforced concrete rahmen bridge.

Comparison of reaction force and contact pressure on design truck load of slab bridge supported by MSEW abutment (보강토교대로 지지된 슬래브교의 설계 활하중에 대한 반력 및 접지압 검토)

  • Kim, Hong-Bae;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.510-519
    • /
    • 2019
  • In this study, the structural analysis was conducted to the comparison of reaction force and contact pressure on the design truck load (DB-24 and KL-510) of slab bridge supported by MSEW abutment. As a result of the structural analysis, the reaction force acting on the abutment at the continuous bridge was reduced rather than the simple span bridge. The reaction force due to the dead load was estimated to be about twice as large as that of the live load, and the influence of the live load on the total reaction force was relatively small. The contact pressure of the MSEW abutment was estimated to be the largest in the simple span bridge. The influence of contact pressure on the type of live load was relatively small. Therefore, it is considered to be more advantageous to apply the MSEW abutment to the continuous bridge than to the simple span bridge because the contact pressure acting on the abutment on the continuous bridge is estimated to be small. Since the reaction force and the load sharing ratio acting on the MSEW abutment depending on various conditions, it is necessary to examine the contact pressure in various types of bridges and specifications.

Analysis of Post-tensioned Slab Bridge by Means of Specially Orthotropic Theory (특별직교이방성 이론에 의한 포스트텐션 슬래브교의 해석)

  • Han, Bong-Koo;Bang, Bae-San
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.13-17
    • /
    • 2010
  • A post-tensioned slab bridge is analyzed by the specially orthotropic theory. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This slab bridge with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and the beam theory are used for analysis. The result of beam analysis is modified to obtain the solution of the plate analysis. The result of this paper can be used for post-tensioned slab bridge analysis by the engineers with undergraduate study in near future.

  • PDF

A Study on Applicability and External / Internal Stability of true MSEW abutment with slab (순수형 보강토교대의 슬래브교에 대한 적용성 및 외적/내적 안정성 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.263-274
    • /
    • 2018
  • In this study, the applicability and external/internal stability of a MSEW abutment with a slab were investigated. Structural analysis of slab bridges between 10 ~ 20.0 m and thicknesses of 0.7 ~ 0.9 m was carried out to calculate the reaction forces due to dead and live loads acting on the bridge supports. The slab bridge with a length of 20.0 m satisfied the allowable contact pressure of 200 kPa for the true MSEW abutment. Because the external stability of the true MSEW abutment was dominated by the geometry of the MSE wall, the change in the factor of safety due to the load of the super-structure is small. Because the stiffness of the foundations is fixed and the load of the super-structure is increased, the factor of safety of the bearing capacity was reduced. As the load of the super-structure was increased, the horizontal earth pressure of the true MSEW abutment increased greatly. As a result, the pullout and fracture of the uppermost reinforcement, which are the factors of safety, did not meet the design criteria. Therefore, it is necessary to increase the pullout resistance and the long-term allowable tensile force of the reinforcement placed on the top of the reinforced soils to ensure efficient design and performance of a true MSEW abutment.

A Parametric Study on the Serviceability of Concrete Slab Track on Railway Bridges (철도교 콘크리트 슬래브궤도의 사용성에 관한 매개변수 영향 연구)

  • Park, Hong-Kee;Jang, Seung-Yup;Yang, Sin-Chu;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.95-103
    • /
    • 2009
  • Deformations of bridge deck ends on abutments and piers bring about severe problems in track geometry and require maintenance work. In case of concrete slab track, more severe deformation and additional forces on rail and rail supports can be induced by bridge deck deformation, which affect the serviceability of track structure since concrete slab track is much stiffer than ballasted track and the behavior of track structure is integrated with that of bridge deck. In this study, the design variables affecting the serviceability of track structure are selected and the influence level is estimated by a parametric study. As a result, it is found that continuous span is advantageous than simply supported span and the stiffness of bridge bearing and rail fastener as well as the distance between last rail support and bridge bearing are most important parameters.