• Title/Summary/Keyword: 슬래그

Search Result 1,797, Processing Time 0.027 seconds

Thermodynamic Modeling of Long-Term Phase Development of Slag Cement in Seawater (해수에 노출된 슬래그 시멘트의 장기 상변이 열역학 모델링)

  • Park, Solmoi;Suh, Yongcheol;Nam, Kwang Hee;Won, Younsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.341-345
    • /
    • 2021
  • Known to improve resistance to chloride ingress, blast furnace slag is a widely used supplementary cementitious material. However, a detailed characterization of cements blended with slag exposed to seawater remains unavailable. This study employs thermodynamic modeling as a toolkit for assessing the long-term phase evolution of slag cement in seawater. The modeling result shows that slag incorporation leads to the formation of phases that are less prone to structural alteration in seawater. Formation of more ettringite is expected to induce expansion in both plain and blended cements, while brucite is unstable in the blended systems. Despite this, the porosity is expected to increase in the blended cements, and aluminate hydrates with a higher chloride binding capacity are more abundant in the blended cements. The results suggest that the use of slag in concrete improves the durability performance of concrete in marine environments.

An Experimental Study on the Setting Time and Compressive strength of Mortar using Ferronickel Slag Powder (페로니켈슬래그 미분말을 사용한 모르타르의 응결시간 및 압축강도특성에 관한 실험적 연구)

  • Kim, Young-Uk;Kim, Do-Bin;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.551-558
    • /
    • 2018
  • This study evaluate the fluidity and hardening properties of mortar by replacement ratio of ferronickel slag powder to estimate the applicability of ferronickel slag powder for cement replacement materials. Ferronickel slag powder was replaced by 0, 5, 10, 15 and 20% of the cement weight. In addition, blast furnace slag powder and fly ash were also used for comparing with the mixtures using ferronickel slag powder. As the test results, the micro-hydration heat of the mixture containing the ferronickel slag powder was lower than that of the mixtures containing the same amount of blast furnace slag powder and fly ash. The flow of the sample with ferronickel slag powder was relatively higher than the other mixtures. In all ages, the compressive strength of the mixture with ferronickel slag powder and fly ash was similar to that of the mix containing only fly ash. In case of drying shrinkage, the mixture containing ferronickel slag powder exhibited lower drying shrinkage than the mixture using blast furnace slag powder, and similar to the mixture containing fly ash.

수종 수산생물의 생존에 미치는 복합슬래그의 영향

  • Jin, Pyung;Kim, Kyung-Sun;Lee, Jung-A;Kim, Jin-Mi;Shin, Yoon-Kyung
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.321-322
    • /
    • 2001
  • 1970년대에 들어 세계 각국은 제철 부산물인 제강슬래그와 고로슬래그를 연안해역의 제방 건설자재로 본격적으로 사용하였다. 따라서 이들 슬래그가 수산생물에 미치는 영향여부에 대한 관심이 높아졌다. 농토의 비옥화에는 이 슬래그가 한몫을 한다고 알려져 있는 반면, 수산생물에 대한 연구는 그렇게 많지 않은 편이다. Iikaka 등(1973)에 의하면, 연안 해역에 슬래그를 투입한 후 즉시 어류나 새우류들이 주위에 모여들었으며 약 8∼9% 슬래그 투입수조에서는 어류의 성장이 잘 되었고 이란과 치어의 성장과 생존률도 좋았음을 밝히고 있다. (중략)

  • PDF

Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag using the Slag by-product as an Activator (슬래그부산물을 자극제로 활용한 고활성 고로슬래그 미분말 모르타르의 압축강도 발현 특성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Koo, Kyung-Mo;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • Recently, many efforts related to the utilization of industrial by-products have been made to reduce carbon dioxide emissions in the construction industry. Of these various efforts, concrete incorporating ground granulated blast furnace slag (BFS) provides many advantages compared to conventional concrete, such as high long-term compressive strength, improved durability and economic benefits because of its latent hydraulic property, and low compressive strength at early curing age. This paper investigates the compressive strength of high-activated ground granulated blast furnace slag blended mortar with slag by-product S type(SBP-S). The results of the experiment revealed that incorporating high-activated ground granulated blast furnace slag would affect the compressive strength of mortar. It was found that increasing the Blaine fineness and replacement ratio of slag by-product S type shows high compressive strength of mortar at early curing age because of its high $SiO_2$ and CaO contents in the slag. It is confirmed that an increase of curing age does not affect the compressive strength of mortar made with slag by-product S type at a high curing temperature. Moreover, it is possible to develop and design concrete manufactured with high-activated ground granulated blast furnace slag as binder considering the acceleration curing conditions and mix proportions.

Utilization of Electric Arc furnace Slag md Converter Slag after Aging for Concrete Aggregate (콘크리트용 골재로서 에이징처리한 제강슬래그외 활용)

  • 문한영;유정훈
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.597-607
    • /
    • 2002
  • Electric arc furnace and converter slag are produced by about 6 millions tons in Korea at 2000 year. But compared with blast furnace slag, those are utilized only in unvalued material like landfill and road construction. There are unstable materials, like free CaO, in electric arc furnace and converter slag at steel-manufacturing process. This might cause volume expansion in concrete, if electric arc furnace and converter slag aggregates were used in concrete. This expansion may reach to crack or collapse of concrete. It is therefore settled by standard specification for concrete that electric arc furnace and converter slag aggregates have not to use in concrete. First of all, volume stability and stabilized process should be solved in electric arc furnace and converter slag aggregate to use in concrete. In this study, 6 types of aging are evaluated for effects of stabilization to reduce the expansion of electric arc furnace and converter slag. h converter slag aggregate, these types of aging are not good for volume stability for concrete aggregate, and even if converter slag aggregate is treated with aging, concrete with it has some problems that strength is reduced with curing days. But in electric arc furnace slag aggregate treated with hotwater and steam aging, the expansion of electric arc furnace slag aggregate is reduced about two times than that of converter slag aggregate, and electric arc furnace slag aggregate concrete has good results in strength compared with control concrete using crushed stone.

A Study on the Strength Property of Recycled Fine Aggregate (Wet Type) Mortar with Blast Furnace Slag (고로슬래그를 사용한 습식 순환 잔골재 모르타르의 강도 특성에 관한 연구)

  • Shim, Jong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.153-160
    • /
    • 2010
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. The recycled aggregate includes the cement paste hardened as the surface and the type of the aggregate, which contains plenty of calcium hydroxide($Ca(OH)_2$) as well as the unhydrated cement. Accordingly, the objectives of this study are to inspect the manufacturing the recycled fine aggregate mortar used with blast furnace slag, to consider the effects of the recycled aggregate on the strength development of ground granulated blast furnace slag, and then to acquire the technical data to take into consideration the further usages of the recycled aggregate and blast furnace slag. In eluted ions from recycled aggregate, it showed that there were natrium($Na^+$) and kalium($K^+$), expected to be flown out of unhydrated cement, as well as calcium hydroxide($Ca(OH)_2$). Application of this water to mix cement mortar with ground granulated blast furnace slag was observed to expedite hydration as calcium hydroxide($Ca(OH)_2$) and unhydrated cement component were expressed to give stimuli effects on ground granulated blast furnace slag. The results of the experiment show that the recycled aggregate mixed with blast furnace slag has comparatively higher hydration activity in 7 day than the mortar not mixed with one in 3 day mortar does, causing the calcium hydroxide in the recycled fine aggregate to work on as a stimulus to the hydration of ground granulated blast furnace slag.

Geotechnical Characteristics of Reduced Slag-soil Mixtures in Electric Furnace (전기로 제강 환원 슬래그 혼합토의 지반공학적 특성)

  • Shin, Jaewon;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.31-37
    • /
    • 2011
  • Only a few studies have been conducted using reduced slag as recycled material. The reduced slag in electric furnace is produced as a by-product in making a steel and a few applications of the reduced slag as expensive additives and bonding materials or as the stabilized soils was reported. The purpose of this study is to present the feasibility of the reduced slag as recycled material, especially, in a field of civil engineering. In order to achieve the purpose experiments such as SEM and XRF analysis was conducted for the reduced slag in electric furnace. Based on the results various geotechnical experiments were conducted to know engineering properties of slag-soil mixtures. Weathered soils and clay are mixed with reduced slag for various ratios. As the ratio of reduced slag to weathered soil increases, the maximum dry unit weight of the mixture decreased with increasing optimum moisture content. The results indicates that there is no effect on a reduced slag by compaction efforts. The shear strengths of the weathered soil-slag mixtures are slightly higher or similar to those of weathered soils. The permeability of the weathered soil-slag mixtures is similar to that of silty or sandy soils. Therefore, it is possible to use the mixtures as embankment or backfill materials in the fields. The unconfined strength of the mixtures of reduced slag and clay is higher than that of clay and it tends to increase with the curing time. Therefore it can be used to improve the soft ground.

Numerical Analysis for Slag Deposition in the Kick Motor (킥모터 슬래그 적층에 대한 수치해석)

  • Jang, Je-Sun;Kim, Byung-Hun;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.131-143
    • /
    • 2008
  • Slag mass deposition was required to predict performance accurately of KSLV-I kick motor(KM) system. The validation of the numerical analysis was performed with mass flow rate measured at 4th ground test of the KM. The study described here included internal flow field of KM at various time steps during burning. Slag mass accumulation was computed through the aluminum oxide particle paths to deviate from the gas flow streamlines in flight. These numerical analysis was performed with Fluent 6.3 program The effects for the acceleration, origins and diameters of the aluminum oxide particles was analyzed, finally the total slag mass accumulation was acquired. We confirmed that the slag mass deposition was agreement well with predicted slag mass based on kick motor the grounded test.

  • PDF

The Microstructure and Durable Properties of the Composites with the Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 몰탈의 미세구조와 내구특성)

  • Kim, Won-Ki;Soh, Jung-Sub;Kim, Dong-In;Kim, Hoon-Sang;Kim, Hong-Joo
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2004.05a
    • /
    • pp.143-148
    • /
    • 2004
  • 고로슬래그 미분말과 플라이 애쉬와 같은 재료들이 콘크리트의 내구성과 장기강도 증진을 목적으로 혼합재로서 사용되고 있다. 본 연구에서는 고로슬래그 사용 몰탈의 내구성 증진 특성을 활용하기 위하여 고로슬래그 미분말에 알칼리 자극제를 첨가한 알칼리 활성화 슬래그계 무기결합재 사용 몰탈의 내구성과 물리적 특성을 평가하였다. 실험결과, 몰탈의 초기 압축강도 발현에 알칼리 자극제가 큰 영향을 미치는 것을 확인하였다. 또한 알칼리 자극제가 첨가된 몰탈의 화학적 저항성을 평가하기 위하여 공시체를 재령 28 일 후, 5% 황산($H_2SO_4$) 용액에 침지하여 압축강도 및 질량 변화를 관찰하였다. 그 결과, 보통포틀랜드 시멘트로 제조한 몰탈의 경우, 황산용액 침지 후 압축강도가 54% 감소하였다. 반면 고로슬래그 미분말을 첨가한 몰탈의 경우, 약 10% 강도가 감소하였다. 질량변화의 경우, 보통포틀랜드 시멘트로 제조한 공시체는 17%, 고로슬래그 미분말을 첨가한 몰탈은 3%의 질량변화를 보였다. 이 결과로서 고로슬래그 미분말을 첨가한 몰탈의 경우, 화학적 저항성과 물리적 특성이 우수한 것을 확인하였다.

  • PDF

Recycling of Chilled Converter Slag as Aggregate in Cement Mortar (급랭 진로슬래그 모르타르 골재 재활용 특성)

  • Kim, Tae Heui;Park, Kyung Bong
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.238-243
    • /
    • 2006
  • The aggregate properties of chilled converter slag reformed by atomizing liquid converter slag were investigated. The properties of mortars with various replacement of standard sand by chilled converter slag as recycled fine aggregates were investigated. The particle shape of chilled converter slag by atomizing was a sphere with an open cavity which is enclosed with two layers like a bored coconut. Specific gravity, unit weight and fineness modulus increased with increasing the replacement, and solid content had the maximum at the replacement of 75% and water absorption rate had the minimum at the replacement. The hardened mortars with higher replacements have the higher specific gravity and the denser texture.

  • PDF