• Title/Summary/Keyword: 슬래그시멘트

Search Result 637, Processing Time 0.029 seconds

Up-cycling of Air-cooled Ladle Furnace Slag : Environmental Risk Assessment and Mortar Compressive Strength Assesment of Binary and Ternary Blended Cement Using Air-cooled Ladle Furnace Slag (전기로 환원슬래그 Up-cycling : 환경위해성 평가 및 환원슬래그를 혼합하여 제조한 2성분계 및 3성분계 혼합시멘트 모르타르 압축강도 평가)

  • Cho, Han Sang;Mun, Young Bum;Moon, Won Sik;Park, Dae Cheol;Kim, Hyeong Cheol;Choi, Hyun Kook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.159-164
    • /
    • 2015
  • This study investigated the environmental risk for up-cycling of air-cooled ladle furnace slag (LFS) and evaluated the mortar compressive strength of binary and ternary blended cements using LFS of 3, 5, 10 wt%. Based on the Soil Environment Conservation Act standard, there was no environmental risk of the up-cycling of LFS. Results of mortar compressive strength assesment showed that the compressive strength of two blended cements using LFS of lower than 5 wt% was about 1.1 times superior to that of un-substituted cement (ordinary portland cement, OPC); however the compressive strength of those with LFS of 10 wt% decreased with 10% compared with that of OPC.

Study of Non Sintered Cement Mortar Using Nanoslag and Alkali Activator (나노슬래그와 알칼리 자극제를 활용한 비소성 시멘트 모르타르에 관한 연구)

  • Jeong, Sung-Wook;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.61-66
    • /
    • 2010
  • As global warming has had harmful effects on the environment, the construction industry has made efforts to reduce the amount of $CO_2$ generated in the process of cement production. There is an urgent need for an alternative material that can replace cement. To improve the initial strength and economical efficiency pointed out as problems, this research was conducted for Blast Furnace Slag (BFS), an industrial byproduct. Non-sintering cement (NSC) was used by minimizing the amount of high-priced alkali activators. By using Nano-technology, fineness has been maximized, to enhance the initial strength of BFS. This research is based on non-sintered cement replaced by nano-slag using alkali activators, and the fundamental properties and quality of the non-sintered cement were investigated. A variety of activators were used, up to 10 percent of the slag weight. This research aims to present fundamental data through a comparative analysis of flexural strength, compressive strength, time of setting, diabetic temperature, and rising heat.

Simulation on the Alternation of Limestone for Portland Cement Raw Material by Steel By-products Containing CaO (CaO 함유 철강 부산물을 활용한 시멘트 원료 석회석 대체 시뮬레이션)

  • Jae-Won Choi;Byoung-Know You;Min-Cheol Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this study, to reduce CO2 emission in the cement manufacturing process, we evaluated the limestone that is used as a raw material for cement, substituted with steel slag by the various substituted levels. Based on the chemical composition of each raw materials including limestone, and blast furnace slow cooling slag, converter slag, and KR slag as an alternative raw material, we simulated the optimal cement raw mixture by the substitution levels of limestone. Test results indicated that the steel slags contain a certain level of CaO that can be used as alternative decarbonated raw materials, and it has enough to partially reduce the amount of limestonem. And we estimated the maximum usable levels of each raw material. In particular, it was confirmed that by using a mixture of these raw materials rather than using them one by one, the effect of reducing limestone was increased and CO2 emission from the cement manufacturing process could be reduced.

Strength and Durability of Polymer-Modified Mortars Using Ground Granulated Blast-Furnace Slag (고로슬래그 미분말을 혼입한 폴리머 시멘트 모르타르의 강도 및 내구성)

  • 주명기;김남길;연규석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.164-170
    • /
    • 2002
  • Effect of the polymer-binder ratio and slag content on the properties of combined wet/dry-cured polymer-modified mortars using granulated blast-furnace slag are examined. Results shows that the flexural and compressive strengths of polymer-modified mortar using the slag tend to increase with increasing slag content, and reaches a maximum at a slag content of 40 %, and is inclined to increase with increasing polymer-binder ratio. Water absorption, carbonation depth and chloride ion penetration depth tend to decrease with increasing polymer-binder ratio and slag content. Accordingly, the incorporation of slag into polymer-modified mortars at a slag content of 40% is recommended for a combined wet/dry curing regardless of the types of polymer.

An Experimental Study on the Properties of Concrete by Fineness of Slag Cement (슬래그시멘트의 분말도에 따른 콘크리트의 특성에 관한 실험적 연구)

  • Lee, Jun;Cho, Chul-Ho;Kim, Sang-Yun;Bok, Joung-Soo;Kang, Suk-Pyo;Lee, Min-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.359-360
    • /
    • 2010
  • This study was performed an evaluation of physical & mechanical properties of mortar & concrete by fineness of slag cement. As the results of study, strength of mortar and concrete tended to improve as the fineness of slag cement increased and when considering early strength and 28days strength, the proper content fineness of slag cement was thought to be $5,000cm^2/g$.

  • PDF

Development of Fly Ash/slag Cement Using Alkali-activated Reaction(1) - Compressive strength and acid corrosion resistance - (알칼리 활성반응을 이용한 플라이 애쉬/슬래그 시멘트 개발(1) - 압축강도 및 산 저항성 -)

  • Park, Sang-Sook;Kang, Hwa-Young;Han, Kwan-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.801-809
    • /
    • 2007
  • Fly ash and blast furnace slag are an industrial by-product that can be alkali-activated to yield adhesive and cementitious materials, whose production is less energy-intensive and emits less $CO_2$ than ordinary Portland cement manufacture. A laboratory investigation was carried out to evaluate the effect of alkali-activating conditions on compressive strength of fly ash/slag cement and the acid corrosion resistance of this cement. Two alkali activator solution, NaOH and waterglass + NaOH solutions, were used. Waterglass concentration was the factor that gave the highest compressive strength in all tests. The next significant factor was the NaOH concentration, followed by curing temperature. Acid corrosion resistance of FC(fly ash cement) and FSC(fly ash/slag cement), such as sulfuric$(H_2SO_4)$ and hydrochloric acid(HCl), was for better than Portland cement(PC).

Case Study on the Mixing Proportions of 100 Year Life Time Concrete (내구수명 100년 해양 콘크리트의 배합사례)

  • Jang, Bong-Seok;Ahn, Jeong-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1073-1076
    • /
    • 2008
  • This study shows some results of concrete mixing design has 100 years life time. The ratios of ternary blended cement are 4 types. the ratios of blast furnace slag cement are 3 types. In this case study, 40%, 50% and 60% replacement ratio of blast furnace slag(BSF) to OPC are used, also 35:45:20, 30:35:35, 30:40:30 and 35:40:25 ratio of OPC:BSF:FA are used. The mixing design tests include slump, air content, compressive strength and thermal properties of concrete. The compressive strength tests are executed at the age of 3, 7, 28, 56, and 91 days. The coefficient of chloride diffusion is determined by NT Build 492 method. The purpose of this study is to shows the results of case studies as the ratio of blended cement varies.

  • PDF

Properties of Non Sintered Cement Mortar using Ferro Nickel Slag (페로니켈 슬래그를 사용한 비소성 시멘트 모르타르의 특성)

  • Youn, Min-Sik;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.641-649
    • /
    • 2022
  • This study aims to completely develop a non sintered cement mortar using industrial by-products. To replace Portland cement, blast furnace slag, circulating fluidized bed fly ash, and pulverized coal fly ash were used, and natural aggregates were substituted with ferronickel slag. To understand the characteristics of the non sintered cement mortar to which ferronickel slag is applied, an experiment was conducted by classifying the particle size. Fluidity and workability were confirmed through the flow test, and bending and compressive strength tests were conducted at 3, 7, and 28 days of age. In addition, durability was identified through a chloride ion penetration test. Through the study, it is judged that the binder, which completely replaced cement and aggregate, has high potential of being used as a construction material. Notably, it was confirmed to be advantageous for strength and durability.